The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus

Author:

Saintot Aline12,Brunet Marie-Françoise3,Yakovlev Fedor4,Sébrier Michel3,Stephenson Randell1,Ershov Andrei5,Chalot-Prat Françoise6,McCann Tommy7

Affiliation:

1. Netherlands Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Sciences, Vrije UniversiteitDe Boelelaan 1085, 1081 HV Amsterdam, Netherlands

2. Present address:NGULeiv Eirikssons vei 39, N-7491 Trondheim, Norway (aline.saintot@ngu.no)

3. UMR 7072 Tectonique CNRS-UPMC, Case 129, Université Pierre et Marie Curie4 place Jussieu, 75252 Paris cedex 05, France

4. Institute of Physics of the EarthRAS, Moscow, Russia

5. Moscow State University, Geological FacultyMoscow, Russia

6. CRPG15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre-Les-Nancy Cedex, France

7. Geologisches Institut, Universitat BonnNußallee 8, 53115 Bonn, Germany

Abstract

AbstractThe Greater Caucasus (GC) fold-and-thrust belt lies on the southern deformed edge of the Scythian Platform (SP) and results from the Cenozoic structural inversion of a deep marine Mesozoic basin in response to the northward displacement of the Transcaucasus (lying south of the GC) subsequent to the Arabia-Eurasia collision. A review of existing and newly acquired data has allowed a reconstruction of the GC history through the Mesozoic and Cenozoic eras. In Permo(?)-Triassic times, rifting developed along at least the northern part of the belt. Structural inversion of the basin occurred during the Late Triassic corresponding to the Eo-Cimmerian orogeny, documented SE of the GC and probably linked to the accretion of what are now Iranian terranes along the continental margin. Renewed development of extensional basin formation in the area of the present-day GC began in Sinemurian-Pliensbachian times with rift activity encompassing the Mid-Jurassic. Rifting led to extreme thinning of the underlying continental crust by the Aale-nian and concomitant extrusion of mid-ocean ridge basalt lavas. A Bathonian unconformity is observed on both sides of the basin and may either correspond to the end of active rifting and the onset of post-rift basin development or be the record of collision further south along the former Mesozoic active margin. The post-rift phase began with deposition of Late Jurassic platform-type sediments onto the margins and a flysch-like unit in its deeper part, which has transgressed the basin during the Cretaceous and Early Cenozoic. An initial phase of shortening occurred in the Late Eocene under a NE-SW compressional stress regime. A second shortening event that began in the Mid-Miocene (Sarmatian), accompanied by significant uplift of the belt, continues at present. It is related to the final collision of Arabia with Eurasia and led to the development of the present-day south-vergent GC fold-and-thrust belt. Some north-vergent retro-thrusts are present in the western GC and a few more in the eastern GC, where a fan-shaped belt can be observed. The mechanisms responsible for the large-scale structure of the belt remain a matter of debate because the deep crustal structure of the GC is not well known. Some (mainly Russian) geoscientists have argued that the GC is an inverted basin squeezed between deep (near)-vertical faults representing the boundaries between the GC and the SP to the north and the GC and the Transcaucasus to the south. Another model, supported in part by the distribution of earthquake hypocentres, proposes the existence of south-vergent thrusts flattening at depth, along which the Transcaucasus plunges beneath the GC and the SP. In this model, a thick-skinned mode of deformation prevailed in the central part of the GC whereas the western and eastern parts display the attributes of thin-skinned fold-and-thrust belts, although, in general, the two styles of deformation coexist along the belt. The present-day high elevation observed only in the central part of the belt would have resulted from the delamination of a lithospheric root.

Publisher

Geological Society of London

Subject

Geology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3