Andean flat-slab subduction through time

Author:

Ramos Victor A.1,Folguera Andrés1

Affiliation:

1. Laboratorio de Tectónica Andina, Universidad de Buenos Aires – CONICET

Abstract

AbstractThe analysis of magmatic distribution, basin formation, tectonic evolution and structural styles of different segments of the Andes shows that most of the Andes have experienced a stage of flat subduction. Evidence is presented here for a wide range of regions throughout the Andes, including the three present flat-slab segments (Pampean, Peruvian, Bucaramanga), three incipient flat-slab segments (‘Carnegie’, Guañacos, ‘Tehuantepec’), three older and no longer active Cenozoic flat-slab segments (Altiplano, Puna, Payenia), and an inferred Palaeozoic flat-slab segment (Early Permian ‘San Rafael’). Based on the present characteristics of the Pampean flat slab, combined with the Peruvian and Bucaramanga segments, a pattern of geological processes can be attributed to slab shallowing and steepening. This pattern permits recognition of other older Cenozoic subhorizontal subduction zones throughout the Andes. Based on crustal thickness, two different settings of slab steepening are proposed. Slab steepening under thick crust leads to delamination, basaltic underplating, lower crustal melting, extension and widespread rhyolitic volcanism, as seen in the caldera formation and huge ignimbritic fields of the Altiplano and Puna segments. On the other hand, when steepening affects thin crust, extension and extensive within-plate basaltic flows reach the surface, forming large volcanic provinces, such as Payenia in the southern Andes. This last case has very limited crustal melt along the axial part of the Andean roots, which shows incipient delamination. Based on these cases, a Palaeozoic flat slab is proposed with its subsequent steepening and widespread rhyolitic volcanism. The geological evolution of the Andes indicates that shallowing and steepening of the subduction zone are thus frequent processes which can be recognized throughout the entire system.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference162 articles.

1. Alasonati Tašárová Z. (2007) Towards understanding the lithospheric structure of the southern Chilean subduction zone (36°S–42°S) and its role in the gravity field. Geophysical Journal International, doi: 10.1111/j.1365-246X.2007.03466.

2. Aleman A. M. (2006) Backbone of the Americas, Asociación Geológica Argentina – Geological Society of America Symposium, Abstract with Programs The Peruvian flat-slab, (Mendoza), p 17.

3. THE EVOLUTION OF THE ALTIPLANO-PUNA PLATEAU OF THE CENTRAL ANDES

4. Comparative seismic and petrographic crustal study between the Western and Eastern Sierras Pampeanas region (31°S);Alvarado;Revista de la Asociación Geológica Argentina,2005

5. Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3