Oceanward rift migration during formation of Santos–Benguela ultra-wide rifted margins

Author:

Araujo Mario Neto1ORCID,Pérez-Gussinyé Marta23ORCID,Muldashev Iskander2ORCID

Affiliation:

1. CENPES Research Center, Petrobras, Rio de Janeiro, Brazil

2. University of Bremen, Geosciences, Bremen, Germany

3. MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

Abstract

Abstract This paper presents the time and space evolution of crustal deformation and their respective sedimentary infill of the 600 km wide, asymmetric conjugate rifted margin of the Santos–Benguela basins. Based on a geoseismic transect obtained with interpretation of long-offset seismic reflection and tied by wells, we interpret six main synrift unconformities, corresponding to different deformation phases processed from the Valanganian to Early Albian. Confined by these unconformities, sedimentary growths with progressively young relative ages towards the boundary with the oceanic crust are interpreted as evidence of oceanward rift migration. The combination of this information with crustal structure derived from long-offset seismic reflection illuminating the deep crust of the Santos–Benguela conjugate margins, resulted in a complete view of sedimentary infill, internal compartments, and crustal structure. These data were used to guide a dynamic model of rifting resulting in a simulated lithospheric section. We show that the margin architecture can be explained by the combination of an early, protracted phase of distributed deformation, followed by basinward rift migration. Distributed deformation lasted from the Valanginian to Early Aptian (135–117 Ma), initiating with isolated lakes that later coalesced into a wide basin-scale lake (>450 km). From the Mid Aptian to Early Albian (117–110 Ma), rift migration formed the main structural compartments and unconformities, as well as the distal hinge zones we observe today in the seismic lines. During this time, the inner proximal margins were left behind to thermally subside, whereas outer proximal and distal margins were tectonically active. Coexistence of these two processes explains the enigmatic simultaneous formation of proximal sag-like geometries, with late synrift accumulation of a salt layer up to 3 km thick, with tectonically active faults in the distal margin, promoting crestal block uplift that could explain the deposition of Late Aptian, shallow water, pre-salt carbonate rocks.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3