Contrasting transform and passive margin subsidence history and heat flow evolution: insights from 3D thermo-mechanical modelling

Author:

Balázs Attila1ORCID,Gerya Taras1ORCID,May Dave2ORCID,Tari Gábor3

Affiliation:

1. Department of Earth Sciences, ETH Zürich, 8048, Switzerland

2. Scripps Institution of Oceanography, UC San Diego, CA 92037, USA

3. OMV Upstream, Vienna, 1020, Austria

Abstract

AbstractTransform and passive margins developed during the continental rifting and opening of oceanic basins are fundamental elements of plate tectonics. It has been suggested that inherited structures, plate divergence velocities and surface processes exert a first order control on the topographic and bathymetric evolution and thermal history of these margins and related sedimentary basins. Their complex spatial-temporal dynamics have remained controversial. Here, we conducted 3D magmatic-thermo-mechanical numerical experiments coupled with surface processes modelling to simulate the dynamics of continental rifting, continental transform fault zone formation and persistent oceanic transform faulting and zero-offset oceanic fracture zones development. Numerical modelling results allow to explain the first order observations from passive and transform margins, such as diachronous rifting, heat flow rise and cooling in individual depocenters and contrasting basin tectonics of extensional and transtensional origin. In addition, the models reproduce the rise of both marginal ridges and transform marginal plateaus and their interaction with erosion and sedimentation. Comparison of model results with observations from natural examples yield new insights into the tectono-sedimentary and thermal evolution of several key passive and transform continental margins worldwide.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5756555

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3