Dissecting through the metallogenic potentials of Precambrian granitoids: case studies from the Bastar and Eastern Dharwar Cratons, India

Author:

Pandit Dinesh1,Bhattacharya Sourabh2,Panigrahi Mruganka K.3

Affiliation:

1. Department of Geology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India

2. School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, 752 050, India

3. Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, 721 302, India

Abstract

AbstractThe Malanjkhand granodiorite in the Bastar Craton hosts a major copper (+ molybdenum) deposit. It represents a Precambrian granite–ore system lacking in key morphological features of porphyry-type deposits but is comparable as a chemical package with a distinct mode of evolution of the magmatic-hydrothermal system. Mineral chemistry of biotite and apatite along with bulk geochemical data constrain critical parameters such as initial water and halogen contents of the magma. Evolution of the magmatic-hydrothermal fluid has been envisaged with available thermobarometric data. A quantitative ore genetic model in terms of efficiency of removal of metals and resultant mineralization in terms of quantity of metals has been attempted for the Malanjkhand deposit. The Eastern Dharwar Craton witnessed prolific granitic activities in multiple phases during the Late Archean and are spatially close to auriferous schist belts. Against a widely held view of a single metamorphogenic origin of metal and ore fluid, a granite–gold connection can be visualized for the auriferous schist belts of the Eastern Dharwar Craton through comparison of fluid characteristics in the granitoid and ore regimes and mineral chemical constraints. Although a quantitative genetic link between the granitoid and gold would need more data, a magmatic component of the ore fluid could be established based on the available information.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3