Grain growth and the lifetime of diffusion creep deformation

Author:

Pearce Mark A.1,Wheeler John2

Affiliation:

1. Geospatial Research Ltd., Department of Earth Science, Durham University, Durham DH1 3LE, UK

2. Department of Earth & Ocean Sciences, University of Liverpool, Liverpool L69 3GP, UK

Abstract

AbstractExtreme grain-size reduction due to cataclasis, neocrystallization or phase change results in a switch to diffusion creep and dramatic weakening in deforming rocks. Grain growth increases strength until dislocation creep becomes a significant deformation mechanism. We quantify the ‘lifetime’ of diffusion creep by substituting the normal grain growth law into the diffusion creep flow law to calculate the time taken for dislocation creep to become significant. Stress-temperature and strain-rate-temperature space is outlined where diffusion creep may accommodate significant strain: these regions have an upper temperature limit beyond which grain growth is fast enough to move the rock quickly into the dislocation creep field. For plagioclase the limit lies in the amphibolite facies. Rocks in a mantle upwelling experience grain-size reduction during phase changes. Pressure-dependent grain growth limits the deformation that can be accommodated by diffusion creep. This time limit and associated strain limit is independent of starting grain size with a small dependence on upwelling rate and plume width. In both these tectonic environments, second phases are likely to play a role in the maximum achievable grain size due to grain-boundary pinning. Hence we predict the minimum lifetimes of diffusion-creep-dominated deformation following extreme grain-size reduction.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3