Halokinetic effects on submarine channel equilibrium profiles and implications for facies architecture: conceptual model illustrated with a case study from Magnolia Field, Gulf of Mexico

Author:

Kane Ian A.12,McGee David T.3,Jobe Zane R.45

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds LS29JT, UK

2. Statoil ASA, Research Centre, Sandsliveien 90, 5020 Bergen, Norway

3. ConocoPhillips Subsurface Technology, 600 North Dairy Ashford, Houston, TX 77079-1175, USA

4. School of Earth Sciences, Stanford University, California, USA

5. Shell Projects and Technology, 3737 Bellaire Boulevard, Houston, TX 77025, USA

Abstract

AbstractIn Magnolia Field, deepwater sediments were affected during deposition by allochthonous salt. Pleistocene channel systems developed on a salt flank and were initially deeply incised close to the salt but progressively avulsed down the lateral slope, each time with decreasing depth of incision. Following this degradational stage, a lobe developed on top of the channel fills and a large-scale aggradational system developed. A conceptual model of submarine channel development adjacent to active topography has been developed from this dataset. Channels may become deeply entrenched during stages of salt growth, but only where flow frequency and magnitude are sufficient to outpace topographic growth. Where flows are less frequent topographic growth may present a barrier to successive flows, causing avulsion. The large-scale cycles of salt growth and withdrawal commonly recognized in subsurface systems, combined with eustatic sea-level changes, may result in a cyclic style of evolution whereby channels initially become entrenched and/or step away from the growing topography, switching to backfilling as salt growth slows or pauses, followed by a distributive-style as the entire system backsteps. During salt withdrawal the equilibrium profile may become relatively raised and channels may develop an aggradational style. In these settings, significant cross-channel facies asymmetry may result.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3