Microscale damage evolution in compacting sandstone

Author:

DiGiovanni A. A.1,Fredrich J. T.,Holcomb D. J.,Olsson W. A.

Affiliation:

1. Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-0750, USA

Abstract

AbstractRecent field, laboratory, and theoretical studies suggest that under certain stress conditions, compaction of porous rock may be accommodated by narrow zones of localized compressive deformation oriented perpendicular to the maximum compressive stress. Triaxial compression experiments were performed on Castlegate sandstone, an analogue reservoir sandstone, that included acoustic emission detection and location. Initially, acoustic emissions were concentrated in horizontal bands that initiated at the sample ends (perpendicular to the maximum compressive stress) but, with continued loading, progressed axially towards the sample centre. High-resolution field-emission SEM was performed to elucidate the micromechanics of compaction. The microscopy revealed that compaction of this weakly cemented sandstone proceeded in two phases: an initial stage of porosity decrease accomplished by breakage of grain contacts and grain rotation, and a second stage of further porosity reduction accommodated by intense grain breakage and rotation. Quantitative stereological measurements corroborated the decrease in the intergrain spacing and the increase in grain boundary contacts that the microstructural observations suggest occurred during the first stage of compaction. The microstructural data show that a five-fold increase in the surface area per unit volume resulted from the extensive microfracturing that occurred during the second stage of compaction.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference43 articles.

1. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution;Antonellini;AAPG Bulletin,1995

2. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah

3. Small faults formed as deformation bands in sandstone

4. Analysis of faulting in porous sandstones

5. Barnichon J.-D. Charlier R. (1999) Paper presented at 2nd Euroconference on Rock Physics and Rock Mechanics (14–18), Finite element modeling of shear banding in sedimentary basins undergoing tectonic compression (Edinburgh, Scotland) November.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3