Effect of freeze-thaw cycles on soil physicochemical properties and fractions of Pb and Cr in the northeastern Qinghai-Tibet Plateau

Author:

Li Leiming12,Wu Jun123ORCID,Lu Jian4,Min Xiuyun12

Affiliation:

1. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China

2. Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, Qinghai 810008, China

3. School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, People's Republic of China

4. CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, China

Abstract

Simulation experiments were conducted by using soils in the northeastern Qinghai-Tibet Plateau to explore the effects of freeze-thaw cycles on soil physicochemical properties, Pb and Cr distribution and fraction transformation. Soils were incubated at -15 ℃ for 24 h and at 5℃ for 24 h to complete a freeze-thaw cycle. The soil physicochemical properties and the fractions of Pb and Cr in soils were analyzed after serial freeze-thaw treatments. The results showed that different freeze-thaw cycles and water content affected soil physicochemical properties and fractions of Pb and Cr in soils to some extent. The cation exchange capacity increased significantly in agricultural and pastoral soils after five freeze-thaw cycles. The sand proportion of soil in an urban area decreased at 60 freeze-thaw cycles. Freeze-thaw cycles did not change the functional groups and mineral constituents of soils. The infrared peaks of soils with different freeze-thaw conditions were very similar. The freeze-thaw treatment influenced the mobility, chemical fractions of Pb and ecological risk in most of soils. The exchangeable Pb in agricultural and pastoral area increased from 0.19% to 1.52%/0.90% after 5/10 freeze-thaw cycles with 60% water content. The ecological values of Pb in urban soil were 8.32%/7.38% higher at 10/15 freeze-thaw cycles compared with the control treatment. Hence, these findings provided useful information on physicochemical properties and fraction transformation of Pb and Cr in soils undergoing freeze-thaw cycles to offer an additional insight on Pb and Cr behaviors in cold and freezing environments.Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issues

Publisher

Geological Society of London

Subject

General Earth and Planetary Sciences,Geochemistry and Petrology,General Environmental Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3