Characterization of altered mafic and ultramafic rocks using portable XRF geochemistry and portable Vis-NIR spectrometry

Author:

Adams Cameron1ORCID,Dentith Michael1ORCID,Fiorentini Marco1

Affiliation:

1. Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, WA, Australia

Abstract

The accurate characterization of mafic and ultramafic rocks is a challenging but necessary task given the spatial and genetic relationship of mineralization with specific lithologies (e.g. komatiite hosted nickel-sulfides preferentially associated with cumulate-rich ultramafic rocks). Rock classification is further complicated as most mafic and ultramafic rocks have undergone varying degrees of alteration. The accuracy and reproducibility of characterization can be significantly improved by using portable energy dispersive X-ray fluorescence (pXRF) chemical data with portable visible and near-infrared (pVis-NIR) mineralogical data.A new workflow using pXRF and pVis-NIR is presented and used to reliably characterize mafic and ultramafic rocks from the Yilgarn Craton, Western Australia. The workflow involves six steps:(1) Mitigate and identify compound processing and closure issues. For example, we used a pXRF with helium flush to reliably and rapidly measure light elements and mitigate closure, i.e. problems related to data failing to sum to 100%.(2) Identify and exclude geochemically heterogeneous samples. Heterogeneity may be unrelated to alteration and caused by veining or small-scale structure interleaving of different rock types. Geochemical heterogeneity was evaluated using skewness and kurtosis of SiO2 data.(3) Relate rocks from similar magmatic, weathering and alteration events. This was achieved by interpreting data grouping of Vis-NIR ferric and ferrous iron data via a 852 nm/982 nm reflectance v. 651 nm/982 nm reflectance plot and the ferrous abundance index. Unrepresentative data were omitted.(4) Correct XRF iron data, and characterize lithology and alteration. Values ascribed to regions in the TAS (total alkali silica) diagram were used to approximate FeO and Fe2O3. Subsequently, geochemical indices (e.g. Mg#) were used to characterize the alteration box plot.(5) Characterize fractionation in detail. Fractionation variation diagrams were used to interpret fractionation, e.g. MgO v. Al2O3, Ca/Al v. Al2O3, Ni/Cr v. Ni/Ti, and MgO v. Cr.(6) Identify and quantify talc alteration and serpentinization. This included the use of a new alteration plot (Mg# v. 1410 nmRAD/Albedo) to estimate serpentinization and identify relationships between serpentine, carbonate, chlorite and talc abundances.The results and observations contained in this contribution have important implications for progressive technologies such as core logging platforms that are equipped with pXRF and pVis-NIR instruments.

Publisher

Geological Society of London

Subject

General Earth and Planetary Sciences,Geochemistry and Petrology,General Environmental Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3