Geochemical characteristics of rare earth elements (REEs) in soils developed on different parent materials, in the Baoshan area, Yunnan Province, SW China

Author:

Zhang Li12,Han Wei12,Peng Min12,Liu Fei12,Song Yuntao12,Liu Xiujin12,Wang Qiaolin12,Li Kuo123,Zhao Dongjie34,Yang Wei5,Qin Yuanli123,Cheng Hangxin12

Affiliation:

1. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. Research Center of Geochemical Survey and Assessment on Land Quality, China Geological Survey, Langfang 065000, China

3. China University of Geosciences, Beijing 100083, China

4. Development and Research Center of China Geological Survey, Beijing 100037, China

5. Hubei Geological Research Laboratory, Wuhan, 430034, China

Abstract

The geochemistry of rare earth elements (REEs) was studied in rock samples from host formations, ore samples from two mineral deposits (the Hetaoping Cu-Pb-Zn mine: HTP and the Heiyanao Fe-Cu-Pb-Zn mine: HYA) and the overlying or nearby soils to better understand REE concentrations, distributions and behaviour during weathering from different parent materials at the regional scale, Baoshan area, Yunnan Province, SW China. The mudstone and sandstone formations have the highest total REE (ΣREE) contents. Chondrite-normalized diagrams for rocks and ores show significant light REEs (LREEs) enrichments and Eu depletion (except for ores in HYA). Cerium displays an obvious negative anomaly in carbonate rocks (Є-3-R, C-R, D-R, T-1-R and T-2-R). Soils overlying carbonate rock formations (T-1-S, C-S and Є-3-S) have the highest ΣREE contents, while soils overlying basalts have the lowest ΣREE contents. Soils show enrichments in LREEs with negative Eu anomalies and slight Ce anomalies in the studied soils. Soils with high ∑LREE/∑heavy REE (HREE) values may result from the preferential absorption of LREEs by organic matter. Negative Eu anomalies in soils occur for parent materials in the study area lacking feldspar, especially soils developed from carbonates. Compared to the parent materials, most soils show REE enrichment because alkali metals are removed and REEs are concentrated by low mobility in surficial processes and positive Ce anomalies because of weathering dissolution of other trivalent REEs with ionic radii similar to that of Ca2+.Supplementary material: Additional data (Tables S1 and S2) and sample locations (Fig. S1) are available at https://doi.org/10.6084/m9.figshare.c.5303140

Publisher

Geological Society of London

Subject

General Earth and Planetary Sciences,Geochemistry and Petrology,General Environmental Science,General Chemistry

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3