Application of C-N fractal model, factor analysis, and geochemical mineralization probability index (GMPI) for delineating geochemical anomalies related to Mn-Fe deposit and associated Cu mineralization in west-central Sinai, Egypt

Author:

Helba Hossam A.1ORCID,El-Makky Ahmed M.2,Khalil Khalil I.1

Affiliation:

1. Geology Department, Faculty of Science, Alexandria. Univ., Egypt

2. Biological and Geological Sciences Department, Faculty of Education, Alexandria. Univ., Egypt

Abstract

The west-central Sinai area includes one of the most productive manganese deposits in Egypt (Um Bogma Mn-Fe ore). The explored area is covered by a Carboniferous and Cambro-Ordovician sedimentary succession overlying Precambrian basement rocks. The purpose of this study is to delineate geochemical anomalies of ore and related elements and track their dispersion trains, which may lead to discovery of unknown ore deposits. For this purpose, 143 stream sediment samples were analyzed and the data were interpreted using the concentration-number (C-N) fractal model, factor analysis, and the geochemical mineralization probability index. Geochemical thresholds obtained from the C-N fractal model, factor scores, and GMPI were used for constructing geochemical anomaly maps and delineating probable anomalous sites. The spatial distribution of Mn, Cu, Co, Pb, and Zn anomalies was correlated to Mn and Cu mineralization sites whereas those of Fe and Cr were consistent with mafic rock distributions. Factor analysis revealed significant element associations for mineralization (Cu, Co, Mn, Zn, Pb), country rock composition (Fe, Cr), and element mobility (Cd, Zn). The spatial distribution of ore elements (Mn, Cu) delineated by the factor score and GMPI distribution maps was confirmed and more accurately interpreted using geochemical anomaly maps constructed based on the fractal-derived thresholds. Based on the current study, recent Cu and Mn mineralization sites may be suggested. Cobalt, Zn, Pb, and Cd are suggested as efficient pathfinder elements for marine Mn deposits. A dispersion sequence of Cd>Mn>Co>Pb>Zn>Cu>Cr>Fe was proposed based on the threshold distribution patterns of these elements.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5463511

Publisher

Geological Society of London

Subject

General Earth and Planetary Sciences,Geochemistry and Petrology,General Environmental Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3