Shear velocity structure in the Aegean region obtained by joint inversion of Rayleigh and Love waves

Author:

Karagianni E. E.1,Papazachos C. B.1

Affiliation:

1. Aristotle University of Thessaloniki, Geophysical Laboratory, PO Box 352-1, GR 54124 Thessaloniki, Greece (e-mail: elkarag@geo.auth.gr)

Abstract

AbstractWe present a shear velocity model of the crust and uppermost mantle under the Aegean region by simultaneous inversion of Rayleigh and Love waves. The database consists of regional earthquakes recorded by portable broadband three-component digital stations that were installed for a period of 6 months in the broader Aegean region. For each epicentre–station ray path group velocity dispersion curves are measured using appropriate frequency time analysis (FTAN). The dispersion measurements for more than 600 Love wave paths have been used. We have also incorporated previous results forc. 700 Rayleigh wave paths for the study area. The single-path dispersion curves of both waves were inverted to regional group velocity maps for different values of period (6–32 s) via a tomographic method. The local dispersion curves of discrete grid points for both surface waves were inverted nonlinearly to construct 1D models of shear-wave velocity v. depth. In most cases the joint inversion of Rayleigh and Love waves resulted in a single model (from the multiple models compatible with the data) that could interpret both Rayleigh and Love wave data. Around 60 local dispersion curves for both Rayleigh and Love waves were finally jointly inverted. As expected, because of the complex tectonic environment of the Aegean region the results show strong lateral variations of the S-wave velocities for the crust and uppermost mantle. Our results confirm the presence of a thin crust typically less than 28–30 km in the whole Aegean Sea, which in some parts of the southern and central Aegean Sea becomes significantly thinner (20–22 km). In contrast, a large crustal thickness of about 40–45 km exists in western Greece, and the remaining part of continental Greece is characterized by a mean crustal thickness of about 35 km. A significant sub-Moho upper mantle low-velocity zone (LVLmantle) with velocities as low as 3.7 km s−1, is clearly identified in the southern and central Aegean Sea, correlated with the high heat flow in the mantle wedge above the subducted slab and the related active volcanism in the region. The results obtained results are compared with independent body-wave tomographic information on the velocity structure of the study area and exhibit a generally good agreement, although significant small-scale differences are also identified.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference115 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3