Microfacies development in Late Archaean stromatolites and oolites of the Ghaap Group of South Africa

Author:

Wright David T.1,Altermann Wladyslaw2

Affiliation:

1. Department of Geology, University of Leicester University Road, Leicester, LE1 7RH, UK dtw1@le.ac.uk

2. Institut für Allgemeine und Angewandte Geologie Luisenstrasse 37, Ludwig Maximilians Universität, München, Germany Wlady.Altermann@iaag.geo.uni-muenchen.de

Abstract

AbstractOrganism-environment feedbacks in Precambrian platformal carbonates and reefs were strongly influenced by the activities of diverse microbial ecosystems. Microfacies studies of representative platformal microbial carbonates, comprising cyanobacterial mat, stromatolites and giant ooids, from the Late Archaean Ghaap Group of South Africa have provided compelling evidence for an intimate relationship between taphonomic evolution, fabric development and mineralogy in rocks of the Gamohaan and Boomplaas formations. Cements, both in fold hinges and between the limbs of slump-folded and contorted, partially-degraded, pyritiferous stromatolitic laminae, were precipitated after deformation of organic fabrics, but before or during their compaction, indicating that cementation took place at the same time as anoxic organic degradation involving bacterial sulphate reduction. Bundles and strands of the organic remains of filamentous cyanobacteria, in varying states of degradation in both stromatolites and ooids, have been preserved by mineralization. Structural detail is usually best preserved in calcite, where cyanobacterial sheaths, 10 µm to 25 µm in diameter and hundreds of micrometres in length, can be clearly seen. Petrographic analysis of the microfabrics using cathodoluminescence reveals dolomicrite nucleated along the outer margin of some sheaths. Dolomicrospar and dolospar fabrics developed progressively in association with increasing sheath degradation, as evidenced by the sequential loss of structural detail, culminating in a xenotopic fabric comprising brown, inclusion-rich, anhedral crystals with irregular boundaries. Biogeochemical modelling supports a genetic link between bacterial sulphate reduction and (1) calcite precipitation in the contorted laminae, and (2) replacive dolomitization of the calcitic matrix in the stromatolites and ooids. The evidence indicates that anoxic organic diagenesis was an essential and major process in controlling carbonate precipitation and mineralogy in widespread microbialitic sediments of the Ghaap Group, a depositional environment analogous to many other Archaean, Proterozoic and, during periods of biotic stress, some Phanerozoic carbonate platforms.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3