The significance of the Etive Formation in the development of the Brent system: distinction of normal and forced regressions

Author:

Olsen Tina R.1,Steel Ron J.2

Affiliation:

1. BP Amoco Norge AS PO Box 197, N-4065 Stavanger, Norway

2. Deptartment of Geology/Geophysics, University of Wyoming Laramie, WY 82071, USA

Abstract

AbstractRecent sequence stratigraphic debate on the Brent system have focused on the interpreted nature of the progradational trajectory (horizontal, slightly upwards or downwards) of the shoreline (Rannoch/Etive Formations) through time, as this gives a direct measure of how late Aalenian-Bajocian relative sea level changed during regression. Early interpretations emphasized the unified shallowing-upward nature of the Rannoch-Etive-Ness depositional system, and implicitly accepted a uniform shoreline progradation, i.e. a shoreline trajectory that was horizontal or slightly rising, implying a stable or slightly rising relative sea level. No irregularities of the trajectory were noted, and unusual shifts in facies, grain size etc. were normally related to autocyclic processes. More recent work has suggested that in some instances there is evidence for more irregular shoreline progradation at certain times, and for fall(s) in relative sea level and forced regression. This evidence comes from incised valleys and deep erosion/subaerial exposure surfaces from the landward (Etive-Ness boundary) and basinward (Rannoch-Etive) reaches of the Brent system respectively. However, it is currently unclear if any of these downshift surfaces recognized in the strandplain/coastal plain and shoreface environments are in time-equivalent strata.Current debate is mostly handicapped by a lack of agreement on the origin and depositional facies of the Etive Formation. There is significant debate about the relative amounts of fluvial, tidal and wave influence detected in the strata of this formation, with some authors arguing for a dominance of fluvial distributaries and mouth-bar deposits, whereas others propose either tidal-channel and inlet deposits or wave-dominated shoreface and strandplain settings. The stratigraphy is impacted by this disagreement. The character and sharp base of the Etive Formation can be argued to be consistent with normal shoreline processes, where wave or tidal conditions can produce significant erosion in the shoreface, without the necessity of any forced regression. Other interpretations, particularly where the Etive Formation is seen in terms of fluvial facies and processes, require a significant basinward shift of the shoreline to explain the Rannoch-Etive superposition, and a fall of sea level to cause the erosive boundary between the two formations.However, there is now ample evidence, including new evidence presented here, that both of the end-member scenarios for the progradation of the Brent system are incorrect. The notion that the overall progradation was entirely a product of normal regression, during stable and/or slightly rising relative sea level, is negated by local evidence of incised valleys, of subaerial exposure and plant growth in lower shoreface strata in the Rannoch Formation, and of repeated erosion surfaces with coarse-grained lags at the base of the Etive Formation. On the other hand, the idea of continuous sea level fall or of a single, late-stage fall, such that there was regional valley incision of the Etive into the Rannoch Formation and that the former is entirely younger than the latter, is negated by local evidence of gradual upward facies change between the formations, of stratigraphic interfingering between the formations, and of time lines passing through the Etive into the Rannoch Formation. It is perhaps not surprising that the system’s overall regressive trajectory varied in time from being forced to being normally regressive, and that further detailed local studies are required before regional generalisations can be made.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference69 articles.

1. Development of rift basins illustrated by the structural evolution of the Oseberg feature, block 30/6, offshore Norway;Badley;Journal of the Geological Society, London,1984

2. Bhattacharya J. P. Walker R. G. (1992) in Facies Models — Response to sea level change, Deltas, eds Walker R. J. James N. P. (Geological Association of Canada), pp 157–177.

3. Facies and development of the Middle Jurassic Brent delta near the northern limit of its progradation, UK North Sea;Brown,1989

4. Brown S. Richards P. C. Thompson A. R. (1987) in Petroleum Geology of North West Europe, Patterns in the deposition of the Brent Group (Middle Jurassic) UK North Sea, eds Brooks J. Glennie K. W. (Graham & Trotman, London), pp 890–913.

5. Budding M. C. Inglin H. F. (1981) in Petroleum Geology of the Continental Shelf of the Northwest Europe, A reservoir geological model for the Brent Sands in the Southern Cormorant, eds Illing L. V. Hobson G. D. (Heyden, London), pp 326–334.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3