Long-term thermal consequences of tectonic activity at Mount Isa, Australia: Implications for polyphase tectonism in the Proterozoic

Author:

McLaren S.1,Sandiford M.1

Affiliation:

1. School of Earth Sciences, University of Melbourne Victoria 3010, Australia

Abstract

AbstractMount Isa is a Palaeo-Mesoproterozoic terrane in Northern Australia characterized by >300 Ma of episodic tectonic activity prior to effective cratonization. This tectonic activity has resulted in dramatic changes in the heat production distribution in the crust and must have been accompanied by long-term changes in thermal regimes. Primary differentiation of crust initially enriched in heat producing elements has been achieved by felsic magmatism over much of the 300 Ma history, often associated with extensional deformation. The flux of heat producing elements from lower to mid-upper crustal levels associated with this magmatism was sufficient to cause long-term lower crustal cooling of at least 200°C. The accumulation of the radiogenic intrusives (which comprise c. 230f surface outcrop and have heat production rates averaging 5.2 µWm−3) in the mid-upper crust resulted in a highly stratified heat production distribution. One consequence of this distribution is that small changes in the depth to this heat production, through processes such as deformation, erosion and the deposition of sediments, lead to significant changes in deep crustal temperatures (up to 100°C) and consequently lithospheric strength. These considerations suggest that the long-term evolution of the Mount Isa region partly reflects the progressive concentration of heat-producing elements in the upper crust leading to a long-term increase in lithospheric strength, and eventually to effective cratonization. The long-term cooling and strengthening trend was locally countered by the role of subsidence during basin formation which, through burial of heat producing elements in the existing crust and the accumulation of more heat production in insulating sediments, helped to localize subsequent contractional deformation.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference51 articles.

1. Stratigraphy and depositional setting of the upper McNamara Group, Lawn Hills region, Northwest Queensland

2. Asymmetric extension of the Middle Proterozoic lithosphere, Mount Isa terrane, Queensland, Australia

3. Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere

4. Blake D. H. (1987) Geology of the Mount Isa Inlier and environs, Queensland and Northern Territory, Bureau of Mineral Resources, Geology and Geophysics Bulletin, 225.

5. Stratigraphic and tectonic framework, Mount Isa Inlier;Blake,1992

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3