Affiliation:
1. School of Earth Sciences, The University
Leeds LS2 9JT, UK
Abstract
AbstractSEM/EBSD-based orientation and misorientation analyses are described for a lower amphibolite facies simple shear zone (Torridon, NW Scotland). It is shown that as well as conventional crystal-slip processes (i.e. basal-a, prism-a, rhomb-a and negative second order rhomb-a slip), dauphine twinning also plays a role in both microstructural and petrofabric evolution. Twinning assists in the initial grain size comminution processes, including dynamic recrystallization, from originally coarse wall rock grains to a typical mylonitic microstructure in the centre of the shear zone. Subsequently, twinning helps to accommodate high shear strains in the mylonite whilst maintaining a stable microstructure and constant ‘single crystal’ petrofabric. The role of dauphine twinning appears to be to allow efficient switching between relatively ‘soft’ and relatively ‘hard’ slip directions that possibly exploit a distinction between negative and positive crystal forms. Misorientation analysis emphasizes the relationships between crystal-slip systems and grain boundary network, including dauphine twin planes, and suggests that the mylonitic microstructure contains preferred orientations of both tilt and twist boundaries that help to explain shear zone microstructural evolution and stability.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献