Rheology of a two-phase material with applications to partially molten rocks, plastic deformation and saturated soils

Author:

Vigneresse J. L.1

Affiliation:

1. CREGU UMR CNRS 7566 G2R, BP 23, F-54501 Vandoeuvre Cedex, France jean-louis.vigneresse@g2r.uhp-nancy.fr

Abstract

AbstractA global model is presented to account for the specific rheology of a two-phase material. Examples of observations are taken from a crystallizing magma and these are applied to a partially molten rock, plastic deformation and soil liquefaction. The general behaviour of the viscosity is drawn as a function of the strain rate and the amount of solid phase. It constitutes a 3D diagram developing a cubic surface. The cubic equation is justified by thermodynamic considerations. It results from the mixing of a Newtonian (n = 1) and a power law (n = 3) type of deformation. The diagram shows two types of rheological response. At high strain rate values, the viscosity contrast between the two phases is the lowest. The resulting en masse behaviour is observed during tectonic activity. It manifests itself by homogeneous transport of magma during emplacement and fabric development. An equivalent medium, with average viscosity is a good proxy. Conversely, at low strain rate values, the viscosity contrast between the two phases is the highest. The two end members behave according to their respective rheology. In between, a transitional state develops, in which instability occurs depending on the strain rate and stress conditions. In the 3D diagram it appears as a cusp shape. Rheology presents continuous jumps between the liquid-like and the solid-like rheology. They result in strain localization or phase segregation. The latter preferentially develops during magma crystallization. Deformation under a constant amount of each phase is also possible, resulting in pressure dissolution-like processes. A bifurcation in the solution plane of the equation of viscous motion causes instability. It is comparable with strain softening. A similar situation should develop when mixing Newtonian and power law rheology, for example during diffusion and dislocation creep, or water-saturated sediment deformation. Owing to the continual jumps between the two types of rheology, hysteresis or memory effect may develop. Rapid cyclic deformation may drive strain to extreme straining. The effect of simple shear seems much more effective than pure shear (compaction) to separate the weak phase from its strong matrix. The development of instabilities and continuous jumps from one rheology to the other lead to discontinuous motion of the weak phase. In a molten region, it corresponds to discontinuous bursts of magma that are extracted.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference121 articles.

1. Rheological models of suspensions;Adler;Advances in Chemical Engineering,1990

2. Statistical theories of atomic transport in crystalline solids

3. Onset of rigidity during cooling and crystallization of felsic magma intrusions. EUG10 Strasbourg;Améglio;Journal of Conference Abstracts,2000

4. Effect of faulting on fluid flow in porous sandstones: petrophysical properties;Antonellini;American Association of Petroleum Geologists Bulletin,1994

5. Critical phenomena in the rheology of partially melted rocks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3