The monitoring and modelling of mine water recovery in UK coalfields

Author:

Whitworth Keith R.1

Affiliation:

1. IMC Consulting Engineers PO Box 18, Huthwaite, Sutton-in-Ashfield, Nottinghamshire, NG17 2NS, UK whitwork@imcgroup.co.uk

Abstract

AbstractThis paper draws together the information that has been obtained on mine water recovery since the large-scale closure of coal mines in the 1980s and 1990s. The data show that, following cessation of pumping, mine water recovery follows an exponential curve similar to the recovery of an aquifer following a pumping test. Several previously unpublished examples of mine water recovery data from around the UK are included in the paper and there is a detailed assessment of mine water recovery in the East Fife Coalfield in Scotland. The reasons for this type of mine water recovery are discussed and examples are given of the use of the data for both the interpretation and modelling of mine water recovery. In coal mining areas where no water-level recovery data are available, methods for the prediction of mine water inflow and recovery modelling are proposed and the problems associated with mine water recovery modelling are discussed.The paper concludes that modelling of mine water recovery, based on mine water inflow and estimated void space, can be used to give reasonably accurate predictions of recovery times and flows, but that water level monitoring is essential for precise predictions.The control of mine water during the period when coal mining was a nationalized industry was generally based on a safety first principle. This meant that when doubt existed about underground connections between modern mines and old abandoned areas of workings, mine water pumping always continued in the old areas. The result of this policy was a general lack of experience of mine water recovery and continuing doubt about underground connections.The large-scale closure of mines in the 1980s and 1990s mean that in many cases whole coalfields were abandoned and that the pumping of mine water either completely stopped or was greatly reduced. Estimations of mine water recovery made by British Coal at the time of these closures were generally based on a water inflow related to the volume of water pumped from a mine and a residual void-space calculation. The void-space was calculated using roadway dimensions for supported excavations and a figure of 10% of the original extractions thickness for unsupported (total extraction) workings (National Coal Board 1972). Using this principle it was assumed that mine water recovery would proceed as a series of steps, with very little recovery when water was ‘filling’ a large void, followed by a period of more brisk recovery until the next large void was reached.The monitoring of mine water recovery by IMC Consulting Engineers on behalf of the Coal Authority (the government agency set up to look after the non-privatized areas of coal mining) has shown that, at least at large scales, mine water recovery follows precise exponential curves that appear to be independent of the distribution of mining voids. These curves are very similar to the recovery curves observed following an aquifer pumping test.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference17 articles.

1. A Strategy For Modeling Ground Water Rebound In Abandoned Deep Mine Systems

2. A physically based model of rebound in South Crofty tin mine, Cornwall;Adams,2002

3. A Variable-Volume, Head-Dependent Mine Water Filling Model

4. (1986) Hydrogeological Assessment of the North East Leicestershire Prospect, Golder Associates. British Coal.

5. Groundwater rebound in the South Yorkshire coalfield: a first approximation using the GRAM model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3