Optical sensing of volcanic gas and aerosol emissions

Author:

McGonigle A. J. S.1,Oppenheimer C.1

Affiliation:

1. Department of Geography, University of Cambridge Downing Place, Cambridge CB2 3EN, UK

Abstract

AbstractVolcanic gas and aerosol surveillance yield important insights into magmatic, hydrothermal, and atmospheric processes. A range of optical sensing and sampling techniques has been applied to measurements of the composition and fluxes of volcanic emissions. In particular, the 30-year worldwide volcanological service record of the Correlation Spectrometer (COSPEC) illustrates the point that robust, reliable, straightforward optical techniques are of tremendous interest to the volcano observatory and research community. This chapter reviews the field, in particular the newer and more versatile instruments capable of augmenting or superseding COSPEC, with the aim of stimulating their rapid adoption by the volcanological community. It focuses on sensors that can be operated from the ground, since they generally offer the most flexibility and sensitivity. The success of COSPEC underlines the point, however, that such devices should be comparatively cheap, and easy to use and maintain, if they are to be widely used.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3