Multiple faults in ductile simple shear: analogue models of flanking structure systems

Author:

Exner Ulrike12,Grasemann Bernhard3,Mancktelow Neil S.1

Affiliation:

1. Geologisches Institut ETH-Zentrum, CH-8092 Zürich, Switzerland

2. University of Vienna Althanstrasse 14, 1090 Vienna, Austria ulrike.exner@univie.ac.at

3. Institut für Geologische Wissenschaften, University of Vienna A-1090 Vienna, Austria

Abstract

AbstractRotational behaviour and deformation around multiple faults was investigated in analogue experiments using a linear viscous matrix material under simple shear boundary conditions. Previous analogue and numerical studies have shown that, for single faults, characteristic deformation geometries are produced in initially straight marker lines parallel to the shear zone boundary (flanking structures). Observations from several natural shear zones suggest that not only single faults, but often several parallel or conjugate fault planes are subjected to progressive shear resulting in distinctive deflection geometries. If the distance between faults is on the order of their length, or less, then the perturbation flow fields interfere and coalescence, and finite deflection structures develop that are distinctly different from those around single fractures. In particular, coeval contractional and extensional geometries may develop across conjugate faults, although for bulk simple shear the total length of marker lines parallel to the shear zone boundary cannot change. This advises caution in inferring shear-zone parallel contraction or extension from secondary slip surfaces. In contrast to single flanking structures, conjugate flanking structure systems occurring in natural shear zones are reliable shear sense indicators due to their triclinic symmetry.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3