On the neutron absorption properties of basic and ultrabasic rocks: the significance of minor and trace elements

Author:

Harvey P. K.1,Brewer T. S.1

Affiliation:

1. Department of Geology, University of Leicester, Leicester LE1 7RH, UK pkh@leicester.ac.uk

Abstract

AbstractThe neutron absorption macroscopic cross-section, Σ, is measured routinely by neutron porosity tools and, although rarely presented as a logging curve in its own right, is used indirectly for the estimation of (neutron) porosity. One of the reasons that this primary measurement is not often employed directly in petrophysical analysis is the difficulty of interpretation. In particular, little is known about the range of Σ values for common lithologies, or exactly what information the measurement is providing.In this contribution we demonstrate that excellent estimates of Σ can be calculated, provided that the chemistry of a sample is known in sufficient detail. When applied to a range of geochemical reference materials, it becomes apparent that the minor and trace elements present may have a profound effect on the Σ value of a sample, and, in turn, on the interpretation of neutron porosity measurements. Using this approach we present Σ data for basaltic and ultrabasic rocks, and model the change in Σ with alteration.Alteration is considered in these models as an increase in alteration minerals (which are mainly clays, but also carbonates and zeolites in basic rock alteration) and changes in the trace-element chemistry of the rocks. Of the trace elements, boron and some of the rare-earth elements are of particular importance. Modelling the variation in Σ with these mineralogical and compositional changes indicates that increases in boron are the most important of these factors in increasing Σ; this is enhanced by the alteration, particularly to clay phases, which generally accompanies an increase in boron.These models suggest that a Σ log should be able to act as a proxy for alteration trends in basic and ultrabasic crystalline rocks, and a quantitative model for such alteration is described.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3