Affiliation:
1. Department of Geology, University of Leicester, Leicester
LE1 7RH, UK
pkh@leicester.ac.uk
Abstract
AbstractThe neutron absorption macroscopic cross-section, Σ, is measured routinely by neutron porosity tools and, although rarely presented as a logging curve in its own right, is used indirectly for the estimation of (neutron) porosity. One of the reasons that this primary measurement is not often employed directly in petrophysical analysis is the difficulty of interpretation. In particular, little is known about the range of Σ values for common lithologies, or exactly what information the measurement is providing.In this contribution we demonstrate that excellent estimates of Σ can be calculated, provided that the chemistry of a sample is known in sufficient detail. When applied to a range of geochemical reference materials, it becomes apparent that the minor and trace elements present may have a profound effect on the Σ value of a sample, and, in turn, on the interpretation of neutron porosity measurements. Using this approach we present Σ data for basaltic and ultrabasic rocks, and model the change in Σ with alteration.Alteration is considered in these models as an increase in alteration minerals (which are mainly clays, but also carbonates and zeolites in basic rock alteration) and changes in the trace-element chemistry of the rocks. Of the trace elements, boron and some of the rare-earth elements are of particular importance. Modelling the variation in Σ with these mineralogical and compositional changes indicates that increases in boron are the most important of these factors in increasing Σ; this is enhanced by the alteration, particularly to clay phases, which generally accompanies an increase in boron.These models suggest that a Σ log should be able to act as a proxy for alteration trends in basic and ultrabasic crystalline rocks, and a quantitative model for such alteration is described.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献