Mineralogy and microanalysis in the determination of cause of impact damage to spacecraft surfaces

Author:

Graham G. A.123,Kearsley A. T.45,Drolshagen G.6,McDonnell J. A. M.1,Wright I. P.1,Grady M. M.2

Affiliation:

1. Planetary & Space Sciences Research Institute, The Open University, Walton Hall Milton Keynes MK7 6AA, UK

2. Department of Mineralogy, The Natural History Museum Cromwell Road, London, SW7 5BD, UK

3. Institute for Geophysics & Planetary Physics, Lawrence Livermore National Laboratory Livermore, CA 94551, USA graham42@llnl.gov

4. School of Biological & Molecular Sciences, Oxford Brookes University, Headington Oxford OX3 0BP, UK

5. Electron Microscopy & Mineral Analysis, Department of Mineralogy, The Natural History Museum Cromwell Road, London SW7 5BD, UK

6. TOS-EMA, European Space Research Technology Centre, The European Space Agency Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

Abstract

AbstractCosmic dust grains are the abundant, fine-grained end-member of a range of extraterrestrial materials travelling through space. These particles can impact orbiting space vehicles (e.g. satellites and the International Space Station) at velocities ranging from 10 to 72 km s−1. Impact damage resulting from such a collision could potentially disable or limit the operational use of a spacecraft. There is great commercial interest from the satellite companies and space agencies to understand the nature and proportion of impacts that are caused by cosmic dust particles to assist in risk management studies and for protective shielding optimization. The successful recovery of any surface that has been exposed to the near-Earth environment offers an excellent opportunity to search for micrometre-scaled impact features and the associated projectile residues using scanning electron microscopy and X-ray microanalysis.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference39 articles.

1. Amari S. Foote J. Swan P. Walker R. M. Zinner E. Lange G. (1993) in LDEF — 69 Months in Space. 2nd Post-Retrieval Symposium NASA CP-3194, (Washington DC), in SIMS chemical analysis of extented impacts on the leading and trailing edges of LDEF experiment AO187-2, ed Levine A. S. pp 513–528.

2. Impact probabilities on artificial satellites for the 1993 Perseid meteoroid stream

3. Bernhard R. P. Durin C. Zolensky M. E. (1993) LDEF — 69 Months in Space. 2nd Post-Retrieval Symposium NASA CP-3194, (Washington DC), Scanning electron microscope / energy dispersive X-ray analysis of impact residues in LDEF Tray clamps, ed Levine A. S. pp 541–550.

4. Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury

5. Olympus end of life anomaly — a perseid meteoroid impact event?

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3