The history of meteorite age determinations

Author:

De Laeter J. R.1

Affiliation:

1. Department of Applied Physics, Curtin University GPO Box U1987, Perth, WA 6845, Australia j.delaeter@curtin.edu.au

Abstract

AbstractThe determination of the age of the Earth has been of scientific interest over hundreds of years, but it was not until radioactivity was discovered at the close of the 19th century that the possibility of a physical estimate became possible. The discovery of isotopes, a means of measuring isotope abundances by mass spectrometry, and the establishment of the U, Th-Pb geochronological system gave impetus to the search for the age of the Earth, but many unsuccessful attempts were made before Clair Patterson measured the isotopic composition of lead in iron meteorites in 1956, to produce an age of 4550 Ma, which is still generally accepted today as an excellent estimate of the age of formation, not only of the Earth, but of the solar system itself. A mere 4 years were then to elapse before the dawn of a new era, to decipher the timing of events in the early history of the solar system, was heralded by John Reynold’s exciting discovery that excess 129Xe, a daughter product of the now extinct radionuclide 129I, was present in a stony meteotite. This enabled a ‘formation interval’, between the nucleosynthesis of elements in stars and the formation of meteorite parent bodies, to be determined. The last 40 years of the 20th century have witnessed the investigation of a wide array of short-lived radioactive systems by virtue of the fact that their respective daughter products have been identified in meteoritical material by painstaking mass spectrometric-based research, thus allowing a chronology of early solar system events to be established. This formation interval is less than a few million years.Thus, meteorites were the key to determining both the age of formation of the Earth and of the solar system, together with the early chronology of the solar system. However, meteorites had more secrets to reveal. The ‘third age’ of meteorites is a measure of the time they have spent in space. The bombardment of meteoroids by cosmic rays produces spallation products, some of which are radioactive. Despite the slow production of these radionuclides and their associated daughter products, the long periods of unprotected time spent in space allowed the accumulation of these nuclides, so that when the fragments arrived on Earth, the radioactive systems could be analysed to provide the ‘exposure ages’ of the meteorites in space. Most stony meteorites have exposure ages up to 80 Ma, stony-irons 10–180 Ma and irons up to 2300 Ma, indicating the importance of mechanical strength in their survival in space. There is also evidence of clustering of exposure ages in some meteorite classes, which provide information on the frequency of collisional events and orbital trajectories. A clustering of exposure ages at approximately equal to 7 Ma for asteroidal-sourced meteorites indicate that collisions were prevalent at that time. When meteorites arrive on the Earth’s surface, the source of radionuclide production ceases, but they continue to decay with their characteristic half-lives until retrieved for radiochemical analysis. The activity of such radioactive systems in ‘finds’, compared with corresponding meteorite ‘falls’, give their terrestrial age on the Earth’s surface.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Rosetta Stone of isotope science and the uranium/lead system;Mass Spectrometry Reviews;2010

2. Meteorites and the origin of the solar system;Geological Society, London, Special Publications;2006

3. Chondrules and calcium-aluminium-rich inclusions (CAIs);Geological Society, London, Special Publications;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3