Geological evolution of the Hindu Kush, NW Frontier Pakistan: active margin to continent-continent collision zone

Author:

Hildebrand P. R.1,Searle M. P.1,Shakirullah 2,Khan Zafarali2,Van Heijst H. J.1

Affiliation:

1. Department of Earth Sciences, Oxford University Parks Rd, Oxford OX1 3PR, UK

2. Sarhad Development Authority Mineral Exploration Chitral, Northwest Frontier Province, Pakistan

Abstract

AbstractA geological map of the eastern Hindu Kush, northwest of Chitral, Northern Pakistan, is presented. The lithologies are placed into two main categories, divided by the Tirich Mir Fault Zone. To the northwest, the units of the eastern Hindu Kush are dominated by monotonous sequences of graphite-rich pelitic rocks. Southeast of the fault, the phyllites and diamictites are thought to be lateral equivalents of the Northern Sedimentary Belt of the Karakoram. A structural analysis of the area studied identifies a major, early deformation phase which is usually characterized by tight to isoclinal folding with a well developed axialplanar schistosity. This deformation is thought to have been related to the northward-directed subduction and accretion beneath the southern margin of Asia during the Mesozoic, and may have taken place over a considerable period of time. A major phase of crustal melting at c. 24 Ma generated migmatites and biotite + muscovite ± garnet ± tourmaline leucogranites (including dykes and the Gharam Chasma pluton). This age is comparable to that of the Baltoro pluton in the Karakoram to the east, confirming the regional importance of crustal melting along the southern margin of the Asian plate during the earliest Miocene. The crustal melting was associated with thrusting and folding of the earlier schistosity. Subhorizontal stretching lineations indicate a phase of strike-slip deformation that is thought to have been associated with anticlockwise rotation of the regional foliation strike from E to NE and N after the emplacement of the Gharam Chasma pluton at c. 24 Ma. This deformation and rotation was probably a direct result of the northward-moving Indian plate forcing Kohistan to indent into Asia, resulting in a left-lateral transpressional tectonic environment which remains today. The anomalous height of the Tirich Mir massif, relative to other peaks in the Hindu Kush and the nearby Hindu Raj, may be accounted for by the onset of this transpression.Intensely active seismicity to depths of 300 km beneath the Hindu Kush is associated with seismic shear wave velocities that are significantly faster than those beneath Tibet, where earthquake occurrence is restricted to the upper crust, and previous geophysical studies indicate elevated thermal conditions and possible crustal melts. U-Pb ages suggest that post-India-Asia collision crustal melting beneath the Hindu Kush is restricted to c. 24 Ma, whereas in the Karakoram, the record is both more voluminous and more continuous from c. 37 to c. 9 Ma. These observations reflect major differences in the thermal histories of these regions, where the relatively cooler conditions beneath the Hindu Kush are associated with continental subduction-related seismicity.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3