Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere

Author:

Drury Martyn R.1

Affiliation:

1. Department of Earth Sciences, Faculty of Geosciences PO Box 80.021, 3508TA Utrecht, The Netherlands martynd@geo.uu.nl

Abstract

AbstractThe effects of dynamic recrystallization on the deformation mechanisms and rheology of olivine aggregates in the laboratory and the lithosphere are reviewed in this paper. The low-strain rheology of olivine is well documented; however, deformation in the lithosphere often involves large strains. Large strain experiments show that recrystallization can result in both hardening and softening during deformation. Moderate strain softening in experimental shear and torsion can be explained by the operation of dislocation-accommodated grain boundary sliding in bands of fine recrystallized grains.Data on the temperature dependence of recrystallized grain size are needed to extrapolate the effects of dynamic recrystallization to the lithosphere. Theories of dynamic recrystallization suggest that grain size is strongly stress dependent and moderately temperature dependent. A re-analysis of experimental grain size data indicates that the recrystallized grain size is temperature independent for olivine aggregates with low water content (<300 ppm H/Si).Rheological regime maps have been constructed for the lithospheric mantle. The maps suggest that grain size sensitive power law creep, involving both grain boundary sliding and dislocation creep, will produce strong strain softening, greater than found so far in experimental studies, in dry and wet lithosphere shear zones.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3