Stratigraphic architecture, relative sea-level, and models of estuary development in southern England: new data from Southampton Water

Author:

Long A. J.1,Scaife R. G.2,Edwards R. J.13

Affiliation:

1. Environmental Research Centre, Department of Geography, University of Durham South Road, Durham DH1 3LE, UK

2. Department of Geography, University of Southampton Highfield, Southampton SO17 1BJ, UK

3. Faculteit der Aardwetenschappen, Vrije Universiteit De Boelelaan 1085, 1081 HV Amsterdam, Netherlands

Abstract

AbstractThis paper presents the results of an investigation into the Holocene depositional history of Southampton Water, southern England. A three phase history of estuary development is proposed. Between c. 7500 and 5000 bp (8200 to 5700 cal. a bp), mean sea-level rose rapidly from c. −9m to −4 m od. During this interval thin basal peats which developed in present outer estuary locations were inundated and the area of intertidal and subtidal environments within the estuary expanded. Relative sea-level (RSL) rise began to slow between 5000 and 3000 bp (5700 and 3200 cal. a bp) and a phase of saltmarsh and freshwater peat accumulation occurred. In this interval freshwater peat-forming communities extended outwards and seawards across former saltmarsh and mudflat environments and caused a reduction in the extent of the intertidal area within the estuary. During the late Holocene there was a switch to renewed minerogenic sedimentation as most of the freshwater coastal wetlands of Southampton Water were inundated. This tripartite model is broadly applicable to the Thames and the Severn estuaries, suggesting that regional processes have controlled their macroscale evolution. RSL change and variations in sediment supply emerge as key controls during the first two phases of estuary development. The late Holocene demise of the estuary wetlands probably reflects a propensity for increased sediment reworking and unfavourable conditions for the accumulation and preservation of organogenic deposits due to reduced rates of long-term RSL and watertable rise.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3