Erosion of canyons in continental slopes

Author:

Mitchell Neil C.1

Affiliation:

1. School of Earth, Ocean and Planetary Sciences, Cardiff University Cardiff CF10 3YE, Wales, UK neil@ocean.cardiff.ac.uk

Abstract

AbstractSonar images of the Atlantic USA continental slope reveal an eroded landscape that appears remarkably similar to subaerial landscapes eroded by surface runoff. Analysis of multibeam data reveals that they are also similar in a number of quantitative aspects, such as similar scaling between channel gradient and contributing area, they show Hack’s law scaling of channel length and contributing area, and tributary channels join trunk channels at the same elevation without an intervening waterfall. In modern geomorphology, the physics of river bed erosion and rules for runoff hydrology are used to model how erosion rate varies spatially and temporally, in order to predict large-scale landscape characteristics. This paper describes attempts to adapt such an approach to submarine canyon systems eroded by sedimentary flows. The mathematical form of the erosion is studied using the vertical relief of the canyons for the net erosion depth and is compared with results deduced from long-profile concavity. The rough correspondence between the two approaches lends support to the model. It is shown how the model can be used to help interpretation of canyon morphology by relating the pattern of erosion to the pattern of hemipelagic sediment supplied to the slope and other properties.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference53 articles.

1. Basic Types of Submarine Slope Curvature

2. Fluxes of particulate matter on the slope of the southern Middle Atlantic Bight: SEEP-II;Biscaye;Deep-Sea Research,1994

3. Fluxes of particles and constituents to the eastern United States continental slope and rise: SEEP—I

4. The Shaping of Continental Slopes by Internal Tides

5. Dade W.B. Mitchell N.C. (2005) Regional morphology of submarine canyons in the mid-Atlantic continental slope, USA. Journal of Geophysical Research, in press.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3