Martian gullies: a comprehensive review of observations, mechanisms and insights from Earth analogues

Author:

Conway Susan J.1,de Haas Tjalling23,Harrison Tanya N.4

Affiliation:

1. Laboratoire de Planétologie et Géodynamique de Nantes – UMR CNRS 6112, 2 rue de la Houssinière – BP 92208, 44322 Nantes Cedex 3, France

2. Department of Geography, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK

3. Faculty of Geosciences, Universiteit Utrecht, Vening Meineszgebouw A, Princetonlaan 8a, Utrecht, The Netherlands

4. School of Earth and Space Exploration, Arizona State University, ISTB4 Room 795, 781 Terrace Mall, Tempe, AZ 85287, USA

Abstract

AbstractUpon their discovery in 2000, Martian gullies were hailed as the first proof of recent (i.e. less than a few million years) flowing liquid water on the surface of a dry desert planet. Many processes have been proposed to have formed Martian gullies, ranging from liquid-water seepage from aquifers, melting of snow, ice and frost, to dry granular flows, potentially lubricated by CO2. Terrestrial analogues have played a pivotal role in the conception and validation of gully-formation mechanisms. Comparison with the terrestrial landscape argues for gully formation by liquid-water debris flows originating from surface melting. However, limited knowledge of sediment transport by sublimation is a critical factor in impeding progress on the CO2-sublimation hypothesis. We propose avenues towards resolving the debate: (a) laboratory simulations targeting variables that can be measured from orbit; (b) applications of landscape-evolution models; (c) incorporation of the concept of sediment connectivity; (d) using 3D fluid-dynamic models to link deposit morphology and flow rheology; and (e) a more intense exchange of techniques between terrestrial and planetary geomorphology, including quantitative and temporal approaches. Finally, we emphasize that the present may not accurately represent the past and that Martian gullies likely formed by a combination of processes.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3