Constraining the exhumation history of the northwestern margin of Tibet with a comparison to the adjacent Pamir

Author:

Zhang Shijie12,Najman Yani3,Hu Xiumian2ORCID,Carter Andrew4,Mark Chris5,Xue Weiwei2

Affiliation:

1. School of Tourism, Henan Normal University, Xinxiang, China

2. State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China

3. Lancaster Environment Centre, Lancaster University, Bailrigg, UK

4. Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK

5. Department of Geology, Trinity College Dublin, Museum Building, College Green, Dublin, Ireland

Abstract

Regional variations in the evolution of the Tibetan Plateau have important implications for our understanding of crustal deformation processes. There have been few studies of the evolution of the NW margin of the plateau and its transition to the Pamir Mountains to the west. We focus on this region with a multi-technique detrital study of two sedimentary sections in the Tarim Basin. Our provenance data show that an appreciable component of the detrital material in the sedimentary sections was derived from the Songpan-Ganzi–Tianshuihai composite terrane, with some contribution from the Karakoram and/or West Qiangtang. Given the proximity of the West Kunlun terrane to the sedimentary sections under study, and its long history of exhumation, this terrane in all likelihood also contributed to the studied successions. Our thermochronological data record phases of exhumation in the hinterland in the Triassic, Early Cretaceous and Oligo-Miocene. Similar to the Pamir Mountains, the Triassic and Oligo-Miocene periods of exhumation are attributed to the Cimmerian and Himalayan orogenies, respectively. The Early Cretaceous signal may reflect the distal effects of the Lhasa–Qiangtang collision. Coevality with deformation in the Pamir Mountains suggests a coupled geodynamic system, with retro-arc deformation associated with Neotethyan subduction in the west and terrane accretion in the east. Supplementary material: Detailed analytical method, sample information, petrographic, geochronological and low-temperature thermochronological data are available at https://doi.org/10.6084/m9.figshare.c.7040686

Funder

National Natural Science Foundation of China

Starting Investigator Research Grant from Science Foundation Ireland

Publisher

Geological Society of London

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3