Redox changes in the Iapetus Ocean during the Late Ordovician extinction crises

Author:

Sánchez-Roda Alejandra1ORCID,Wignall Paul B.1ORCID,Xiong Yijun1,Poulton Simon W.1ORCID

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Abstract

The cause of the Late Ordovician mass extinction (LOME) is widely debated, with glaciation, volcanism and oceanic redox fluctuations being proposed as possible drivers. Here, we apply a multi-proxy approach to deep-water Iapetus Ocean samples from Dob's Linn, Scotland, to determine oceanic redox conditions and changes in chemical weathering intensity. We document major redox fluctuations between anoxic ferruginous and oxic conditions during the first, end-Katian extinction pulse, whereas the end-Hirnantian extinction phase witnessed more persistent anoxia. These two episodes were separated by oxic conditions and a major, short-lived decline in chemical weathering during the Hirnantian glaciation, suggesting that although global cooling may have placed stress on certain biota, it was unlikely to be the cause of the extinction crisis. Late Hirnantian anoxia persisted into the Silurian, with widespread euxinia resulting in global drawdown of redox-sensitive trace metals. Recent studies have identified a mid-Katian biotic crisis and recovery prior to the LOME, although the precise stratigraphic position is not yet defined. The mid-Katian record at Dob's Linn shows a major redox change, with dysoxic to anoxic ferruginous deep ocean waters giving way to well-oxygenated conditions at this time. However, links between the mid-Katian biotic crisis and these redox changes remain unclear.

Funder

School of the Earth and Environment, University of Leeds

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3