Tectono-stratigraphic evolution of salt-influenced normal fault systems: an example from the Coffee-Soil Fault, Danish North Sea

Author:

Duffy Oliver B.1ORCID,Gawthorpe Rob L.2ORCID,Docherty Matthew3

Affiliation:

1. Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK

2. Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway

3. Exploration Department, Maersk Oil, Esplanade 50, 1263 Copenhagen, Denmark

Abstract

We explore how the relationships between fault activity, salt movement and sediment loading affect the stratal geometry of the hanging wall throughout the evolution of a salt-influenced normal fault system. We examine a c. 65 km long portion of the Coffee-Soil Fault System in the Danish North Sea, the hanging wall of which has been partially influenced by a pre-rift unit of mobile salt. To constrain the tectono-stratigraphic evolution of this fault system, we combine structural observations with seismic stratigraphic analysis of the hanging wall growth strata. We find that the hanging wall of the Coffee-Soil Fault System shows major depocentre shifts through time, along with marked variability in the along- and across-strike stratal geometries. We explain how the development of these characteristics is influenced by: (1) the segmentation and linkage history of the fault system; (2) the evolution of the salt-cored cover monoclines above blind basement fault segments; and (3) changes in the location and rate of accommodation generated by the load-driven withdrawal of salt up the dip-slope of the hanging wall and by fault-related subsidence. Our findings have implications for structural and stratigraphic studies in salt-influenced rift basins, as well as for understanding the potential distribution of geo-storage and hydrocarbon reservoirs in such settings.

Funder

TotalEnergies

Publisher

Geological Society of London

Subject

Geology

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3