Watermass architecture of the Ordovician–Silurian Yangtze Sea (South China) and its palaeogeographical implications

Author:

Wang Xinqian1,Zhan Chen12,Algeo Thomas J.345,Shen Jun3,Liu Zhanhong1ORCID

Affiliation:

1. Hubei Key Laboratory of Marine Geological Resources, College of Marine Science and Technology, China University of Geosciences-Wuhan, Wuhan, China

2. Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China

3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences-Wuhan, Wuhan, China

4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences-Wuhan, Wuhan, China

5. Department of Geosciences, University of Cincinnati, Cincinnati, Ohio, USA

Abstract

The South China Craton experienced large changes in climate, eustasy and environmental conditions during the Late Ordovician Hirnantian Ice Age, but their impact on the watermass architecture of the Yangtze Sea has not yet been thoroughly evaluated. Here, we reconstruct the salinity–redox structure of the Yangtze Sea based on five Upper Ordovician–Lower Silurian shale successions representing a lateral transect from a deep-water area of the Inner Yangtze Sea (IYS; Shuanghe section) across the shallow Hunan–Hubei Arch (Pengye, Jiaoye and Qiliao sections) to the relatively deep-water Outer Yangtze Sea (OYS; Wangjiawan section). Carbon isotope ( δ 13 C org ) profiles show that the Guanyinqiao Bed (recording the peak Hirnantian glaciation) thins and is less completely preserved at sites on the flanks of the Hunan–Hubei Arch than in deeper water areas to the SW and NE, reflecting bathymetric influences. Watermass salinities were mainly marine at Shuanghe and brackish at the other four study sites, with little variation among Interval I (pre-glaciation), Interval II (Hirnantian glaciation) and Interval III (post-glaciation). Redox proxies document mainly euxinia at Shuanghe and Wangjiawan and suboxia at the other sites during Interval I, with shifts towards more reducing (mostly euxinic) conditions at most sites during Intervals II and III, which shows that all the study sections were deep enough to remain below the redoxcline during the glacio-eustatic lowstand. Two features of the Shuanghe section mark it as being unusual: it alone exhibits fully marine salinities, implying greater proximity to the open ocean than the other four sites, and it exhibits an especially large shift towards more reducing conditions during Interval III (i.e. the post-Hirnantian transgression), implying greater water depths. These features are difficult to reconcile with the standard palaeogeographical model for the Ordovician–Silurian South China Craton, which is characterized by a geographically enclosed and restricted IYS and a more open OYS, arguing instead for the SW end of the IYS to have been connected to the global ocean and the OYS to have been a restricted oceanic cul-de-sac. A review of sedimentological and facies data for the IYS region suggests that our re-interpretation of the Ordovician–Silurian palaeogeography of the South China Craton is viable, although further vetting of this hypothesis is needed. Supplementary material: The dataset and the full crossplot of Sr/Ba v. CaO for this study are available at https://doi.org/10.6084/m9.figshare.c.7170648 Thematic collection: This article is part of the Chemical Evolution of the Mid-Paleozoic Earth System and Biotic Response collection available at: https://www.lyellcollection.org/topic/collections/chemical-evolution-of-the-mid-paleozoic-earth-system

Funder

National Natural Science Foundation of China

China Petroleum & Chemical Corporation

China University of Geosciences

National Major Science and Technology Projects of China

China National Petroleum Corporation

Publisher

Geological Society of London

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3