The engineering geology of the Nottingham area, UK

Author:

Bell F. G.1,Culshaw M. G.12,Forster A.13,Nathanail C. P.4

Affiliation:

1. British Geological Survey, Keyworth, Nottingham NG12 5GG, UK

2. School of Civil Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

3. Present address: Radcliffe-on-Trent, Nottingham NG12 2FS, UK

4. School of Geography, University of Nottingham, Nottingham NG7 2RD, UK; Land Quality Management Ltd., Unit 8 Beeston Business Centre, Technology Drive, Nottingham NG9 2ND, UK

Abstract

AbstractNottingham was built near a crossing point on the River Trent in the East Midlands of England. Initially, the city developed on a low sandstone hill close to the north bank of the river, which provided a secure, well-drained location above the marshes that bordered the river. Geologically, Nottingham stands at the boundary between Palaeozoic rocks to the north and west, and Mesozoic and Cenozoic strata to the south and east. The area is underlain by coal-bearing Carboniferous Coal Measures, Permian dolomitic limestones, Permo-Triassic mudstones and weak sandstones, Jurassic clays and Quaternary glacial and alluvial deposits. Artificial deposits, resulting from the social, industrial and mineral extraction activities of the past, cover the natural deposits over much of the area. This geological environment has underpinned the economic development of the area through the mining of coal (now largely ceased), oil extraction that was important during World War II, brickmaking from clays, alluvial sand and gravel extraction from the Trent Valley, and gypsum extraction from the Permo-Triassic mudstones. The Permo-Triassic sandstone is a nationally important aquifer, and has also been exploited at the surface and from shallow mines for sand. However, this history of the use and exploitation of mineral deposits has created a number of environmental problems, including rising groundwater levels, abandoned mine shafts and mining subsidence, and, within the city itself, the occasional collapse of artificial cavities in the sandstone and contaminated land left by industrial activities. Natural constraints on development include gypsum dissolution, landslides, rockfalls, swell–shrink problems in Jurassic clays and flooding. Occasional minor earthquakes are attributed to movements related to coal mining or natural, deep geological structures. Thus, Nottingham's geological context remains an important consideration when planning its future regeneration and development.

Publisher

Geological Society of London

Subject

Geotechnical Engineering and Engineering Geology

Reference48 articles.

1. Ager G. J. Gibson A. D. (2004) Thermal imaging techniques to map ground disturbances in a former Nottinghamshire coal mining area, British Geological Survey Internal Report, IR/02/007 .

2. Allen D. J. Brewerton L. J. (1997) The physical properties of major aquifers in England and Wales 8, British Geological Survey Technical Report, WD/97/34 . Environment Agency R&D Publication.

3. Geological Society Engineering Group Working Party report on the logging of rock cores for engineering purposes

4. Anonymous (1976) Reclamation of Derelict Land: Procedure for Locating Abandoned Mine Shafts, Department of Environment, (London).

5. Anonymous (1977) Ground Subsidence (Institution of Civil Engineers, London).

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3