Mapping and time-lapse analysis of South Arne Chalk fault network using new developments in seismic dip computation

Author:

Astratti D.1,Aarre V.1,Vejbæk O. V.2,White G.23

Affiliation:

1. Schlumberger, P.O. Box 8013, N-4068 Stavanger, Norway

2. Hess Denmark ApS, Østergade 26 B, DK-100 Copenhagen, Denmark

3. Present address: A.P. Møller–Mærsk A/S, Esplanaden 50, 1098 Copenhagen, Denmark

Abstract

AbstractIn a reservoir, faults at the limit of the seismic resolution can be crucial to explain production history and to optimize field development. However, in most cases the detail required to describe such subtle features depends on the assistance of seismic attributes and semi-automated interpretation techniques. We generated a detailed description of the fault network in the South Arne Chalk Group using a workflow based on a globally consistent computation of the seismic dip. This led to more accurate seismic edge attributes than gained with standard dip estimation techniques. We analysed each fault set and qualitatively assessed its control on fluid flow. Our investigation suggests that the two fracture sets that influence production developed along the same WNW–ESE structural trend and cannot be separated based on the seismic data alone. These faults were active both during and post Chalk deposition. We observe ENE–WSW lineaments that match the pattern of a time-lapse seismic amplitude anomaly associated with water injection. It remains to be verified whether these lineaments could be an extension of overburden faults, as well as whether the increased intensity of the fault network as seen on the 2005 v. the 1995 3D seismic survey was caused by production effects.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Visualization of Structural Deformation on the Kraka Structure (Danish Central Graben) with Color-Processed Seismic Data;Geomechanical Controls on Fracture Development in Chalk and Marl in the Danish North Sea;2023

2. Seismic characterization of carbonate platforms and reservoirs: an introduction and review;Geological Society, London, Special Publications;2021-05-11

3. Fundamental controls on fluid flow in carbonates: current workflows to emerging technologies;Geological Society, London, Special Publications;2014-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3