Untangling the Annot sand fairway: structure and stratigraphy of the Eastern Champsaur Basin (Eocene–Oligocene), French Alps

Author:

Butler Robert W. H.1ORCID,Lickorish Henry W.2,Vinnels Jamie3,McCaffrey William D.2

Affiliation:

1. Geology and Geophysics, School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK

2. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

3. Equinor, 2107 City West Blvd, Houston, TX 77042, USA

Abstract

Early foredeep successions can yield insight into tectonic processes operating adjacent to and ahead of fledgling orogenic belts but are commonly deformed by the same orogens. We develop a workflow towards stratigraphic understanding of these deformed basins, applied to the Eastern Champsaur Basin of the French Alps. This contains a down-system correlative of the southern-sourced (Eocene–Oligocene) Annot turbidites. These strata are deformed by arrays of west-facing folds that developed beneath the Embrunais–Ubaye tectonic allochthon. The folds vary in geometry through the stratigraphic multilayer. Total shortening in the basin is around 4 km and the restored (un-decompacted) stratal thickness exceeds 980 m. The turbidites are generally sand-rich and bed-sets can be correlated through the entire fold train. The succession shows onlap and differential thickening indicating deposition across palaeobathymetry that evolved during active basement deformation, before being overridden by the allochthon. The sand system originally continued over what is now the Ecrins basement massif that, although contributing to basin floor structure, served only to confine and potentially focus further sediment transport to the north. Deformation ahead of the main Alpine orogen appears to have continued progressively, and the past definition of distinct ‘phases’ (‘pre-’ and ‘post-Nummulitic’) is an artefact of the stratigraphic record.

Publisher

Geological Society of London

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3