Thermal history of the southern Antarctic Peninsula during Cenozoic oblique subduction

Author:

Twinn G.1ORCID,Riley T.2,Fox M.3,Carter A.1

Affiliation:

1. Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

2. British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

3. Department of Earth Sciences, University College London, Gower Street, London WC1E 76BT, UK

Abstract

Apatite (U–Th)/He and apatite fission-track thermochronology is used to constrain the cooling and uplift history of the southern Antarctic Peninsula where easterly-directed subduction of the Phoenix Plate, including ridge–trench collisions, has been taking place along its western margin since the Late Cretaceous. Apatite ages and thermal history models are similar on eastern Palmer Land but are younger and vary across westernmost Palmer Land and Alexander Island. Transformation of thermal history models to a single plot shows how cooling rates varied as a function of distance from the trench zone. Eastern Palmer Land preserves a record of uplift during the Late Cretaceous that coincides with changes in Phoenix Plate convergence rates and direction. In contrast, western Palmer Land and Alexander Island experienced a period of increased rates of cooling between c. 25 and 15 Ma. This younger phase of exhumation is bounded by major fault zones related to the extension and rifting that formed the present-day George VI Sound. It was probably triggered by cessation of subduction owing to trench collision of a ridge segment NE of the Heezen fracture zone. No evidence was found for slab window influences as seen along the northernmost part of the Antarctic Peninsula. Supplementary material: QTQt thermal models, a PDF with analytical protocols and supplementary tables are available at https://doi.org/10.6084/m9.figshare.c.6086234

Publisher

Geological Society of London

Subject

Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3