Anatomy of a platform margin during a carbonate factory collapse: implications for the sedimentary record and sequence stratigraphic interpretation of poisoning events

Author:

Andrieu Simon12ORCID,Krencker François-Nicolas13,Bodin Stéphane1

Affiliation:

1. Department of Geoscience, Aarhus University, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Denmark

2. BRGM-French Geological Survey, 3 avenue Claude Guillemin, BP 36009, Orléans 45060, France

3. Institut für Geologie, Leibniz Universität Hannover, Callinstraße 30, Hannover 30167, Germany

Abstract

Sequence stratigraphic interpretations are limited in their prediction of sedimentary architecture and changes in sea-level when used in systems characterized by marked fluctuations in sediment supply, particularly in carbonate-dominated environments. Pronounced variations in sediment supply occurred during the Pliensbachian–Toarcian transition, when significant perturbations of the carbon cycle and intense environmental disturbances led to a global shutdown of carbonate production. We studied the impact of this event on sedimentation and stratal stacking patterns in the Moroccan central High Atlas. We reconstructed the lateral variations in facies and sedimentary geometries along a carbonate platform margin and slope in the field by tracking six key discontinuity surfaces covering the Pliensbachian–Toarcian transition from the platform margin to the toe-of-slope. This work highlights the difficulties in sequence stratigraphic interpretations in cases of neritic carbonate factory collapse without assessments of shoreline movement because the stacking patterns in open marine environments do not necessary reflect the regional variation in base level in disturbed carbonate systems. This study also emphasizes the uncertainties associated with focusing solely on lower offshore strata to assess the history and causes of palaeoenvironmental perturbations because decreases in the rate of carbonate production dampen neritic carbonate shedding and therefore favour the creation of a hiatus in deep water settings.

Funder

Danmarks Frie Forskningsfond

Association Instituts Carnot

Publisher

Geological Society of London

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3