New holozoans with cellular resolution from the early Ediacaran Weng'an Biota, Southwest China

Author:

Yin Zongjun1234ORCID,Sun Weichen125,Reitner Joachim6,Zhu Maoyan124ORCID

Affiliation:

1. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

2. Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China

3. Nanjing College, University of Chinese Academy of Sciences, Nanjing 210008, China

4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

5. University of Science and Technology of China, Hefei 230026, China

6. Department of Geobiology, Geoscience Centre, University of Göttingen, Göttingen 37077, Germany

Abstract

The embryo-like fossils from the early Ediacaran Weng'an Biota (Southwest China, 609 million years ago), widely interpreted as members of holozoans, potentially provide insights to understanding the early evolution of development of metazoans and the rise of the animal kingdom. However, the biodiversity of the embryo-like fossil assemblage is largely underestimated, and its more precise phylogenetic affinities within the holozoan tree are still under debate. Here we describe a new species of embryo-like fossil Ostiosphaera rara n. gen. n. sp. from the Ediacaran Weng'an Biota. These three-dimensional, phosphatized specimens exhibit a spherical morphology, an ornamented thick envelope with a circular opening and a membrane-bounded, multicellular inner body. In terms of biological characteristics, Ostiosphaera rara show similarities to a number of extant and fossil analogues including testate amoebae, unicellular green algae, cellular slime mold Fonticuida and co-occurring Weng'an embryo-like fossils. Although the phylogenetic affinity of Ostiosphaera rara is difficult to constrain very precisely based on the available evidence, it is reasonable to follow the holozoan interpretation for them, since that they share the same grade complexity with the co-occurring embryo-like fossils such as Megasphaera and Helicoforamina in terms of the combination of biological features. It is worth mentioning that the new holozoans resemble asexual reproductive gemmules of fossil and living demosponges in size, morphology, circular opening, and cellular anatomy. If the similarity between them reflects biological affinity rather than convergent evolution, this discovery would force us to rethink the evolutionary history of Precambrian sponges.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion

Funder

National Natural Science Foundation of China

Publisher

Geological Society of London

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ichthyosporea: a window into the origin of animals;Communications Biology;2024-07-29

2. Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans;Proceedings of the Royal Society B: Biological Sciences;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3