Constraining depositional models in the Barents Sea region using detrital zircon U–Pb data from Mesozoic sediments in Svalbard

Author:

Pózer Bue E.1,Andresen A.1

Affiliation:

1. Department of Geosciences, University of Oslo, PO Box 1047, Blindern, N-0316 Oslo, Norway

Abstract

AbstractDetrital zircon U–Pb laser ablation inductively coupled plasma mass spectrometry age data on sandstones from Mesozoic successions on Svalbard are used to investigate provenance changes over time, constrain potential source areas, and to test and refine previous interpretations of the Mesozoic filling of the Barents Sea. The zircon age data indicate a western Laurentian (North Greenland) source in the Early and Middle Triassic. The westerly derived sediments most likely include reworked older sediments with proto-sources in Canada and Greenland. Sediments reaching Svalbard in the Late Triassic display a distinct Uralide signature that demonstrates derivation from the east. Zircon age populations in Late Triassic–Early Jurassic sands suggest mixing of zircons from the Early and Middle Triassic and Late Triassic sediments; the data are interpreted to reflect reworking of older Mesozoic sands and possible renewed input of sediments from the west. The data thus demonstrate a shift from westerly to easterly sediment sources in the early Late Triassic. The Early and Middle Triassic zircon age signature in this study appears to resurface in published Early Cretaceous provenance data from Svalbard, suggesting that sediment input from the east ceased during the Jurassic, and shifted back to westerly sources.Supplementary material:A summary of U–Pb isotopic results, Concordia diagrams of U–Pb age data, K–S test results and cumulative probability plots for all samples are available at www.geolsoc.org.uk/SUP18652.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3