A method for quantifying geological uncertainties in assessing remaining oil targets: a case study from the Glitne Field, North Sea

Author:

Keogh K. J.1,Berg F. K.2,Petek Glitne3

Affiliation:

1. StatoilHydro ASA, TNE SST RGG GRC, 4035 Stavanger, Norway (e-mail: keke@statoilhydro.com)

2. StatoilHydro ASA, TNE SST REST RMS, 7501 Stjørdal, Norway

3. Glitne Petroleum Technology Team, StatoilHydro ASA, 5020 Bergen, Norway

Abstract

AbstractEvaluating the static volume potential of a field from a single geological reservoir model can be a risky business. Each piece of input data used to build the model carries an uncertainty that is not expressed in a single deterministic realization. In evaluating the technical and economic feasibility of drilling a new production well on the StatoilHydro operated Glitne Field, a quantified assessment of the range in expected volumes was undertaken. A geological uncertainty study was initiated to identify and quantify the input parameters of greatest impact on static volumetric uncertainty in the reservoir model and to identify potential upsides or downsides that would strongly affect the economics of the potential well target areas. For each geological input parameter, a high-case and low-case scenario was established to capture the end members (approximating to P90–P10) in that parameter uncertainty. IRAP RMS was used in combination with an in-house Microsoft Excel macro together with @Risk to produce a quantitative analysis of the uncertainty range in STOIIP and a ranking of the parameters most affecting the uncertainty in this range. This study has contributed to making a better-informed decision for drilling a new production well on the Glitne Field and thus increasing ultimate recovery and field life further. The workflow used has its limitations but this study shows that a geological uncertainty study can be performed relatively simply using only a limited number of software applications. This study also hopes to highlight the importance of having these studies undertaken by company asset teams as part of their reservoir characterization routines.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3