Sensitivity and regression analysis of acoustic parameters for determining physical properties of frozen fine sand with ultrasonic test

Author:

Zhang Ji-wei123ORCID,Murton Julian3ORCID,Liu Shu-jie124,Sui Li-li5,Zhang Song126,Wang Lei12,Kong Ling-hui12,Ding Hang12

Affiliation:

1. Shaft Construction Branch, China Coal Research Institute, Beijing 100013, China

2. Tian Di Science & Technology Co. Ltd, Beijing 100013, China

3. Permafrost Laboratory, Department of Geography, University of Sussex, Brighton BN1 9QJ, UK

4. University of Science and Technology Beijing, Beijing 100083, China

5. North China Institute of Science and Technology, Beijing 101601, China

6. School of Civil Engineering, Shijiazhuang Tiedao University, Hebei 050043, China

Abstract

Determining the development of artificial frozen walls by present methods is challenging where substantial seepage occurs because fixed monitoring points only indicate physical properties in small areas. Here we use ultrasonic acoustic methods to determine the physical properties between two freezing pipes during freezing. Sensitivity analysis indicates that wave velocity is sensitive to physical properties, and the sensitivity rank is water content > temperature > density. The attenuation coefficient has a low sensitivity to physical parameters, whereas dominant frequency is sensitive to temperature and water content but insensitive to density. Wave velocity increases with temperature and density in a quadratic relationship, and with water content in a linear relationship. Dominant frequency increases with temperature and water content in a quadratic relationship. A multiple regression model of wave velocity and dominant frequency established by stepwise regression can be used to predict the relationship between wave velocity and temperature of frozen fine sand in different areas where the soil properties are similar to those reported here. Wave velocity and dominant frequency measured in the laboratory can be used to predict the relationship between acoustic parameters and temperature in field conditions after curve move based on the first data point from field measurements. The procedure of curve moving involves calculating the difference in value of the first data point between laboratory and field measurements at the same temperature level, and then moving the predicted curve of the laboratory test upward or downward according to the difference.Supplementary material: Experimental datasets are available at https://doi.org/10.6084/m9.figshare.12268970

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3