A high-precision 40Ar/39Ar age for hydrated impact glass from the Dellen impact, Sweden

Author:

Mark D. F.1,Lindgren P.2,Fallick A. E.1

Affiliation:

1. Isotope Geosciences Unit, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride G75 0QF, UK

2. School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Lilybank Gardens, Glasgow G12 8QQ, UK

Abstract

AbstractThe dating of terrestrial impact craters and impact glasses that exhibit high degrees of mineralogical complexity can be problematic. However, if the maximum potential of the terrestrial impact crater record is to be realized, accurate and precise ages for crater-forming events are critical. Here we report a high-precision 40Ar/39Ar age for the Dellen impact structure, Sweden. Previous radio-isotopic constraints show a wide variation in age as a result of poor sample characterization and analytical approach. A detailed petrographical and mineralogical study provides a solid foundation for interpretation of step-heating 40Ar/39Ar data, culminating in a statistically robust age of 140.82±0.51 Ma (2σ; full external precision) for the Dellen impact event, for which data disfavour an inherited argon component. Primary hydration of the impact melt during cooling–quenching and entrapment of molecular water promoted rapid loss of inherited 40Ar from the impact melt of rhyolitic composition. Duplicate analyses of the water content and ∂D of the glass give similar values for the former (1.9±0.1 μmol mg−1) but unexpectedly low values for the latter (−159±8‰), with scatter beyond the expected analytical reproducibility due to isotopic heterogeneity. This study highlights that the 40Ar/39Ar technique is unrivalled in its ability to precisely and accurately date the products of hypervelocity collisional events.Supplementary material:Raw 40Ar/39Ar data are available at http://www.geolsoc.org.uk/SUP18633.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3