The dual origin of I-type granites: the contribution from experiments

Author:

Castro Antonio1ORCID

Affiliation:

1. Institute of Geosciences (IGEO; CSIC–Universidad Complutense de Madrid), Ciudad Universitaria, 28071 Madrid, Spain

Abstract

AbstractNew laboratory experiments using granulite xenoliths support a dual origin for I-type granites as primary and secondary. Primary I-type granites represent fractionated liquids from intermediate magma systems of broadly andesitic composition. Fluid-fluxed melting of igneous rocks that resided in the continental crust generates secondary I-type granites. The former are directly related to subduction, with Cordilleran batholiths as the most characteristic examples. Experiments with lower crust granulite sources, in the presence of water, show that amphibole is formed by a water-fluxed peritectic rehydration melting reaction. Entrainment of only 10% of restites composed of amphibole, pyroxene, plagioclase and magnetite, is sufficient to account for discrepancies in aluminium saturation index and maficity in secondary I-type granites. Lower crust granulite xenoliths, attached to a sanukitoid containing 6 wt% water, have been used in two-layer capsules to test fluid-fluxed melting reactions as the origin of secondary I-type granites. It is proposed that sanukitoid magmas act as water donors that trigger extensive melting of the lower crust, giving rise to granodioritic liquids. Because primary granites are related to coeval subduction, and secondary ones are crustal melts from older subduction-related rocks, the distinction between both I-types is essential in tectonic reconstructions of ancient orogenic belts.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3