Modification to the flow properties of repository cement as a result of carbonation

Author:

Purser G.1,Milodowski A. E.1,Noy D. J.1,Rochelle C. A.1,Harrington J. F.1,Butcher A.1,Wagner D.1

Affiliation:

1. British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK

Abstract

AbstractA UK repository concept currently under consideration for the disposal of intermediate-level radioactive waste and some low-level waste not suitable for surface disposal involves using large quantities of cementitious materials for construction, grouting, waste containers, waste isolation matrix and buffer/backfill. CO2 generated from the degradation of organic material in the waste will result in cement carbonation and associated mineralogical changes. Hydraulic and gas permeability tests were performed on Nirex Reference Vault Backfill (NRVB) cement at 40 °C and either 4 or 8 MPa. Carbonation reactions using CO2 gas halved the permeability of the NRVB under simulated repository conditions. A greater decrease in permeability (by three orders of magnitude) was found during carbonation using dissolved CO2. Mineralogical changes were found to occur throughout the cement as a result of the reaction with CO2. However, a narrow zone along the leading edge of a migrating reaction front was associated with the greatest decrease in porosity. Fluid pressures increased slightly due to permeability reductions but fluid flow still continued (albeit at a lower rate) preventing the build-up of overly high pressures. Overall, the observed reductions in permeability could be beneficial in that they may help reduce the potential for fluid flow and radionuclide migration. However, continued carbonation could lead to potential issues with regards to gas pressure build-up.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference10 articles.

1. Atkins P. W. (1982) Physical Chemistry (Oxford University Press, Oxford), 2nd edn.

2. Performance of reinforced concrete structures in low-level radioactive waste disposal units;Chau,1995

3. The role of engineered barriers in a UK repository for intermediate level radioactive waste

4. Effect of carbonation on the hydro-mechanical properties of Portland cements

5. Francis A. J. Cather R. Crossland I. G. (1997) Development of the Nirex Reference Vault Backfill

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3