Affiliation:
1. Community Surface Dynamics Modeling System, INSTAAR, University of Colorado at Boulder, CO, USA
Abstract
AbstractWhereas most Late Quaternary sedimentary systems experienced only sea-level rise, fjords record unique sequences because rapid uplift after the unloading of the Last Glacial Maximum (LGM) ice sheets outpaced global eustatic sea-level rise. This study aims to disentangle how rapid initial uplift and high variability of eustatic sea-level change affects fjord sedimentary records. Two numerical models are coupled, ICE-5G and SedFlux, and show that timing and duration of deglaciation and total uplift strongly affect fjord stratigraphy. The ICE-5G model predicts a number of distinct time intervals during which many fjords deglaciate, independent of latitude and short-term climate. Deglaciation of the entire fjord system takes significantly longer (c. 6 ka) for fjords that deglaciate early (17–15 ka BP) than for fjords deglaciating after 9 ka BP (c. 1 ka). Exponential uplift curves totalled c. 220–280 m, and have half-lives of 1–1.4 ka.High uplift rates consistently cause rapid progradation of the rivermouth over tens of kilometres. Thick packages of glaciomarine, and glaciofluvial sediments emerged above sea level and are subsequently incised. Sensitivity tests predict high frequency of submarine mass movements. Fjords that deglaciated early additionally show deposition to be strongly dominated by rapid sea-level rise; signs of drowning are pronounced and subsequent thick fine-grained sequences aggrade. We conclude that recently deglaciated fjords record solely deposition under falling sea-level and thus provide the best modern analogues of forced-regressive systems.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献