The provenance of Avalonia and its tectonic implications: a critical reappraisal

Author:

Murphy J. Brendan1ORCID,Nance R. Damian2,Wu Lei3

Affiliation:

1. Department of Earth Sciences, St Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 2W5

2. Department of Geological Sciences, 316 Clippinger Laboratories, Ohio University, Athens, OH 45701, USA

3. Department of Earth & Planetary Sciences, McGill University, 3450 Rue University, Montréal, Québec, Canada H3A 0E8

Abstract

Abstract The late Neoproterozoic–Cambrian interval is characterized by global-scale orogenesis, rapid continental growth and profound changes in Earth systems. Orogenic activity involved continental collisions spanning more than 100 myr, culminating in Gondwana amalgamation. Avalonia is an example of arc magmatism and accretionary tectonics as subduction zones re-located to Gondwana's periphery in the aftermath of those collisions, and its evolution provides significant constraints for global reconstructions. Comprising late Neoproterozoic ( c. 650–570 Ma) arc-related magmatic and metasedimentary rocks, Avalonia is defined as a composite terrane by its latest Ediacaran–Ordovician overstep sequence: a distinctive, siliciclastic-dominated cover bearing ‘Acado-Baltic’ fauna. This definition implies that Neoproterozoic Avalonia may consist of several terranes, and so precise palaeomagnetic or provenance determination in one locality need not apply to all. On the basis of detrital zircon and Nd isotopic data, Avalonia and other lithotectonically related terranes, such as Cadomia, have long been thought to have resided along the Amazonian–West African margin of Gondwana between c. 650 and 500 Ma – Avalonia connected to Amazonia, and Cadomia to West Africa. These interpretations have constrained Paleozoic reconstructions, many of which imply that the departure of several peri-Gondwanan terranes led to the Early Paleozoic development of the Rheic Ocean whose subsequent demise in the Late Paleozoic led to Pangaea's amalgamation. Since these ideas were proposed, several new lines of evidence have challenged the Amazonian affinity of Avalonia. First, there is evidence that some Avalonian terranes may have been ‘peri-Baltican’ during the Neoproterozoic. Baltica was originally excluded as a potential source for Avalonia because, unlike Amazonia, arc-related Neoproterozoic rocks were not documented. However, subsequent recognition of Ediacaran arc-related sequences in the Timanides of northeastern Baltica invalidates this assumption. Second, detailed palaeontological and lithostratigraphic studies have been interpreted to reflect an insular Avalonia, well removed from either Gondwana or Baltica during the Ediacaran and early Cambrian. Third, recent palaeomagnetic data have raised the possibility of an ocean (Clymene Ocean) between Amazonia and West Africa in the late Neoproterozoic, thereby challenging conventional reconstructions that show the ‘peri-Gondwanan’ terranes as a contiguous belt straddling the suture zone between these cratons. In this contribution, we critically re-evaluate the provenance of the so-called ‘peri-Gondwanan’ terranes, the contiguity of the so-called ‘Avalonian–Cadomian’ belt and the validity of the various plate tectonic models based on the traditional interpretation of these terranes. In addition, we draw attention to critical uncertainties and the challenges that lie ahead.

Funder

NSERC

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3