Subapical Localization of the Dopamine D3 Receptor in Proximal Tubules of the Rat Kidney

Author:

Nürnberger Asja1,Räbiger Marcus1,Mack Andreas2,Diaz Jorge3,Sokoloff Pierre3,Mühlbauer Bernd14,Luippold Gerd1

Affiliation:

1. Departments of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany

2. Anatomy, University of Tübingen, Tübingen, Germany

3. Unité de Neurobiologie et Pharmacologie Moléculaire (INSERM U 109), Centre Paul Broca, Paris, France

4. Department of Clinical Pharmacology, Central Hospital Bremen, Bremen, Germany

Abstract

The dopamine D3 receptor (D3R), intensively studied in neuroscience, also plays an important role in the regulation of renal and cardiovascular function. In contrast to functional findings, less information is available on its localization in the kidney. Neither RT-PCR studies nor radioligand binding assays are suitable to selectively determine the distribution of renal D3R at the level of cellular or even subcellular structures. We studied the renal D3R distribution in Sprague-Dawley rats by a polyclonal antiserum directed against an epitope in the third intracytoplasmic loop. D3R immunoreactivity was detected by indirect immunofluorescence and confocal laser scanning microscopy. D3R staining was confined to the renal cortex and occurred in proximal convoluted tubules near or in direct connection with the urinary pole of the glomeruli. The fluorescent spots were restricted to the subapical portion of the proximal tubular cells. Double staining with the F-actin marker phalloidin revealed a localization of the D3R below the brush border region. However, staining by anti-P1/p2-adaptins, recognizing clathrin-coated compartments, did not correspond to the distribution of the D3R signal. This is the first description of a D3R accumulation in a cytoplasmic pool in the kidney, probably corresponding to a recycling mechanism or storage compartment.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3