A Differential Ligand-mediated Response of Green Fluorescent Protein-tagged Androgen Receptor in Living Prostate Cancer and Non-prostate Cancer Cell Lines

Author:

Nakauchi Hiroo1,Matsuda Ken-ichi2,Ochiai Ikuo2,Kawauchi Akihiro1,Mizutani Yoichi1,Miki Tsuneharu1,Kawata Mitsuhiro2

Affiliation:

1. Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan

2. Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan

Abstract

Androgen has been shown to promote the proliferation of prostate cancer through the action of the androgen receptor (AR). Mutation (T877A) of the AR gene found in an androgen-sensitive prostate cancer cell line, LNCaP, has been postulated to be involved in hypersensitivity and loss of specificity for androgen. In the present study, trafficking of AR and AR (T877A) in living prostate and non-prostate cancer cell lines under high and low concentrations of androgen and antiandrogen was investigated by tagging green fluorescent protein (GFP) to the receptors. In the presence of a high concentration of androgen, AR-GFP localized in the nucleus by forming discrete clusters in all cell lines. AR (T877A)-GFP was also translocated to the nucleus in LNCaP and COS-1 cells by the addition of a high concentration of androgen. In contrast, in the presence of a low concentration of androgen, the translocation of AR-GFP and AR (T877A)-GFP was observed in LNCaP cells, but not in COS-1 cells. Upon the addition of antiandrogen, AR-GFP was translocated to the nucleus but did not form subnuclear foci in both COS-1 and LNCaP cells, whereas AR (T877A)-GFP in both cells was translocated to the nucleus with subnuclear foci. The present study demonstrates the differential response of nuclear trafficking of AR and its mutant in prostate cancer cell lines and COS cells, and the subcellular and subnuclear compartmentalization provide important information on the sensitivity of the AR mutation.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3