A Robust Automated Measure of Average Antibody Staining in Immunohistochemistry Images

Author:

Choudhury Kingshuk Roy1,Yagle Kevin J.2,Swanson Paul E.3,Krohn Kenneth A.2,Rajendran Joseph G.24

Affiliation:

1. Department of Statistics, University College Cork, Cork, Ireland

2. Departments of Radiology, University of Washington, Seattle, Washington

3. Pathology, University of Washington, Seattle, Washington

4. Radiation Oncology, University of Washington, Seattle, Washington

Abstract

Identifying and scoring cancer markers plays a key role in oncology, helping to characterize the tumor and predict the clinical course of the disease. The current method for scoring immunohistochemistry (IHC) slides is labor intensive and has inherent issues of quantitation. Although multiple attempts have been made to automate IHC scoring in the past decade, a major limitation in these efforts has been the setting of the threshold for positive staining. In this report, we propose the use of an averaged threshold measure (ATM) score that allows for automatic threshold setting. The ATM is a single multiplicative measure that includes both the proportion and intensity scores. It can be readily automated to allow for large-scale processing, and it is applicable in situations in which individual cells are hard to distinguish. The ATM scoring method was validated by applying it to simulated images, to a sequence of images from the same tumor, and to tumors from different patient biopsies that showed a broad range of staining patterns. Comparison between the ATM score and manual scoring by an expert pathologist showed that both methods resulted in essentially identical scores when applied to these patient biopsies. This manuscript contains online supplemental material at http://www.jhc.org . Please visit this article online to view these materials.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3